Difference between revisions of "2006 AIME I Problems/Problem 5"

(Solution)
(the second half really isn't necessary, and taking sqrts aren't hard anyway..)
Line 5: Line 5:
 
We begin by [[equate | equating]] the two expressions:
 
We begin by [[equate | equating]] the two expressions:
  
<math> a\sqrt{2}+b\sqrt{3}+c\sqrt{5} = \sqrt{104\sqrt{6}+468\sqrt{10}+144\sqrt{15}+2006}</math>
+
<cmath> a\sqrt{2}+b\sqrt{3}+c\sqrt{5} = \sqrt{104\sqrt{6}+468\sqrt{10}+144\sqrt{15}+2006}</cmath>
  
Squaring both sides yeilds:  
+
Squaring both sides yields:  
  
<math> 2ab\sqrt{6} + 2ac\sqrt{10} + 2bc\sqrt{15} + 2a^2 + 3b^2 + 5c^2 = 104\sqrt{6}+468\sqrt{10}+144\sqrt{15}+2006 </math>  
+
<cmath> 2ab\sqrt{6} + 2ac\sqrt{10} + 2bc\sqrt{15} + 2a^2 + 3b^2 + 5c^2 = 104\sqrt{6}+468\sqrt{10}+144\sqrt{15}+2006 </cmath>  
  
Since <math>a</math>, <math>b</math>, and <math>c</math> are integers:  
+
Since <math>a</math>, <math>b</math>, and <math>c</math> are integers, we can match coefficients:  
  
1: <math> 2ab\sqrt{6} = 104\sqrt{6} </math>
+
<cmath> 2ab\sqrt{6} &=& 104\sqrt{6} \\
 
+
2ac\sqrt{10} &=& 468\sqrt{10} \\
2: <math> 2ac\sqrt{10} = 468\sqrt{10} </math>
+
2bc\sqrt{15} &=& 144\sqrt{15}\\
 
+
2a^2 + 3b^2 + 5c^2 &=& 2006 </cmath>  
3: <math> 2bc\sqrt{15} = 144\sqrt{15} </math>
 
 
 
4: <math> 2a^2 + 3b^2 + 5c^2 = 2006 </math>  
 
  
 
Solving the first three equations gives:  
 
Solving the first three equations gives:  
 +
<cmath>\begin{eqnarray*}ab &=& 52\\
 +
ac &=& 234\\
 +
bc &=& 72 \end{eqnarray*}</cmath>
  
<math> ab = 52 </math>
+
Multiplying these equations gives <math> (abc)^2 = 52 \cdot 234 \cdot 72 = 2^63^413^2 \Longrightarrow abc = \boxed{936}</math>.
 
 
<math> ac = 234 </math>
 
 
 
<math> bc = 72 </math>
 
 
 
Multiplying these equations gives:
 
 
 
<math> (abc)^2 = 52 \cdot 234 \cdot 72</math>
 
 
 
<math> abc = \sqrt{52 \cdot 234 \cdot 72} = 936</math>
 
 
 
ALTERNATIVELY:
 
  
 +
<!--
 
Since this is the AIME and you do not have a calculator solving <math> abc = \sqrt{52 \cdot 234 \cdot 72} = 936</math> might prove difficult.
 
Since this is the AIME and you do not have a calculator solving <math> abc = \sqrt{52 \cdot 234 \cdot 72} = 936</math> might prove difficult.
 
So instead use the three equations given above.
 
So instead use the three equations given above.
Line 82: Line 71:
  
 
<math>abc=\boxed{936}</math>
 
<math>abc=\boxed{936}</math>
 
+
-->
 
== See also ==
 
== See also ==
 
{{AIME box|year=2006|n=I|num-b=4|num-a=6}}
 
{{AIME box|year=2006|n=I|num-b=4|num-a=6}}
  
 
[[Category:Intermediate Algebra Problems]]
 
[[Category:Intermediate Algebra Problems]]

Revision as of 17:42, 28 November 2007

Problem

The number $\sqrt{104\sqrt{6}+468\sqrt{10}+144\sqrt{15}+2006}$ can be written as $a\sqrt{2}+b\sqrt{3}+c\sqrt{5},$ where $a, b,$ and $c$ are positive integers. Find $abc$.

Solution

We begin by equating the two expressions:

\[a\sqrt{2}+b\sqrt{3}+c\sqrt{5} = \sqrt{104\sqrt{6}+468\sqrt{10}+144\sqrt{15}+2006}\]

Squaring both sides yields:

\[2ab\sqrt{6} + 2ac\sqrt{10} + 2bc\sqrt{15} + 2a^2 + 3b^2 + 5c^2 = 104\sqrt{6}+468\sqrt{10}+144\sqrt{15}+2006\]

Since $a$, $b$, and $c$ are integers, we can match coefficients:

\[2ab\sqrt{6} &=& 104\sqrt{6} \\
 2ac\sqrt{10} &=& 468\sqrt{10} \\
 2bc\sqrt{15} &=& 144\sqrt{15}\\
 2a^2 + 3b^2 + 5c^2 &=& 2006\] (Error compiling LaTeX. Unknown error_msg)

Solving the first three equations gives: \begin{eqnarray*}ab &=& 52\\  ac &=& 234\\  bc &=& 72 \end{eqnarray*}

Multiplying these equations gives $(abc)^2 = 52 \cdot 234 \cdot 72 = 2^63^413^2 \Longrightarrow abc = \boxed{936}$.

See also

2006 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions