Difference between revisions of "1965 AHSME Problems/Problem 12"

(added solution page)
 
m (fixed typo)
Line 14: Line 14:
  
 
==See Also==
 
==See Also==
{{AHSME 40p box|year=1965|num-b=10|num-a=12}}
+
{{AHSME 40p box|year=1965|num-b=11|num-a=13}}
  
 
[[Category:Introductory Geometry Problems]]
 
[[Category:Introductory Geometry Problems]]

Revision as of 10:30, 18 July 2024

Problem

A rhombus is inscribed in $\triangle ABC$ in such a way that one of its vertices is $A$ and two of its sides lie along $AB$ and $AC$. If $\overline{AC} = 6$ inches, $\overline{AB} = 12$ inches, and $\overline{BC} = 8$ inches, the side of the rhombus, in inches, is:

$\textbf{(A)}\ 2 \qquad  \textbf{(B) }\ 3 \qquad  \textbf{(C) }\ 3 \frac {1}{2} \qquad  \textbf{(D) }\ 4 \qquad  \textbf{(E) }\ 5$

Solution

$\fbox{D}$

See Also

1965 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
All AHSME Problems and Solutions