Difference between revisions of "1998 AHSME Problems/Problem 22"
m (solution) |
(→Solution) |
||
Line 9: | Line 9: | ||
\qquad\mathrm{(E)}\ 10</math> | \qquad\mathrm{(E)}\ 10</math> | ||
== Solution == | == Solution == | ||
+ | === Solution 1 === | ||
By the change-of-base formula, | By the change-of-base formula, | ||
<cmath>\log_{k} 100! = \frac{\log 100!}{\log k}</cmath> | <cmath>\log_{k} 100! = \frac{\log 100!}{\log k}</cmath> | ||
Line 14: | Line 15: | ||
<cmath>\frac{1}{\log_k 100!} = \frac{\log k}{\log 100!}</cmath> | <cmath>\frac{1}{\log_k 100!} = \frac{\log k}{\log 100!}</cmath> | ||
Thus the sum is | Thus the sum is | ||
− | <cmath>\left(\frac{1}{\log 100!}\right)(\log 1 + \log 2 + \cdots + \log 100) = \frac{1}{\log 100!} \cdot \log 100! = 1 \Rightarrow \mathrm{(C)}</cmath> | + | <cmath>\left(\frac{1}{\log 100!}\right)(\log 1 + \log 2 + \cdots + \log 100) = \frac{1}{\log 100!} \cdot \log 100! = 1 \Rightarrow \mathrm{(C)}</cmath> |
+ | |||
+ | === Solution 2 === | ||
+ | Since <math>1=\log_{k} k</math>, | ||
+ | |||
+ | <math></math>\frac{1}{\log_{k}100!}=\frac{\log_{k}k}{\log_{k}100!}=\log_{100!} k<math> | ||
+ | |||
+ | We add: | ||
+ | |||
+ | </math>\log_{100!} 1 +\log_{100!} 1 +\log_{100!} 1 +\cdots + \log_{100!} 100=\log_{100!}100!=1 \Rightarrow \mathrm{(C)}$ | ||
== See also == | == See also == |
Revision as of 14:35, 9 February 2008
Problem
What is the value of the expression
Solution
Solution 1
By the change-of-base formula, Thus (you might recognize this identity directly) Thus the sum is
Solution 2
Since ,
$$ (Error compiling LaTeX. Unknown error_msg)\frac{1}{\log_{k}100!}=\frac{\log_{k}k}{\log_{k}100!}=\log_{100!} k\log_{100!} 1 +\log_{100!} 1 +\log_{100!} 1 +\cdots + \log_{100!} 100=\log_{100!}100!=1 \Rightarrow \mathrm{(C)}$
See also
1998 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 21 |
Followed by Problem 23 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |