Difference between revisions of "2024 AMC 10A Problems/Problem 1"

(Solution 2 (Distributive Property))
Line 12: Line 12:
 
== Solution 2 (Distributive Property) ==
 
== Solution 2 (Distributive Property) ==
 
We have
 
We have
<math></math>\begin{align*}
+
<cmath>\begin{align*}
 
9901\cdot101-99\cdot10101 &= (10000-99)\cdot101-99\cdot(10000+101) \\
 
9901\cdot101-99\cdot10101 &= (10000-99)\cdot101-99\cdot(10000+101) \\
 
&= 10000\cdot101-99\cdot101-99\cdot10000-99\cdot101 \\
 
&= 10000\cdot101-99\cdot101-99\cdot10000-99\cdot101 \\
Line 18: Line 18:
 
&= 2\cdot10000-2\cdot9999 \\
 
&= 2\cdot10000-2\cdot9999 \\
 
&= \boxed{\textbf{(A) }2}.
 
&= \boxed{\textbf{(A) }2}.
\end{align*}
+
\end{align*}</cmath>
 
~MRENTHUSIASM
 
~MRENTHUSIASM
  

Revision as of 15:19, 8 November 2024

Problem

What is the value of \[9901\cdot101-99\cdot10101?\]

$\textbf{(A)}~2\qquad\textbf{(B)}~20\qquad\textbf{(C)}~200\qquad\textbf{(D)}~202\qquad\textbf{(E)}~2020$

Solution 1 (Direct Computation)

The likely fastest method will be direct computation. $9901\cdot101$ evaluates to $1000001$ and $99\cdot10101$ evaluates to $999999$. The difference is $\boxed{\textbf{(A) }2}.$

Solution by juwushu.

Solution 2 (Distributive Property)

We have \begin{align*} 9901\cdot101-99\cdot10101 &= (10000-99)\cdot101-99\cdot(10000+101) \\ &= 10000\cdot101-99\cdot101-99\cdot10000-99\cdot101 \\ &= (10000\cdot101-99\cdot10000)-2\cdot99\cdot101 \\ &= 2\cdot10000-2\cdot9999 \\ &= \boxed{\textbf{(A) }2}. \end{align*} ~MRENTHUSIASM

See also

2024 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png