Difference between revisions of "2024 AMC 10A Problems/Problem 21"

m
Line 8: Line 8:
  
 
-submitted by Astingo
 
-submitted by Astingo
 +
 +
==See also==
 +
{{AMC10 box|year=2024|ab=A|num-b=20|num-a=22}}
 +
{{MAA Notice}}

Revision as of 17:31, 8 November 2024

Problem

The numbers, in order, of each row and the numbers, in order, of each column of a $5 \times 5$ array of integers form an arithmetic progression of length $5{.}$ The numbers in positions $(5, 5), \,(2,4),\,(4,3),$ and $(3, 1)$ are $0, 48, 16,$ and $12{,}$ respectively. What number is in position $(1, 2)?$ \[\begin{bmatrix} . & ? &.&.&. \\ .&.&.&48&.\\ 12&.&.&.&.\\ .&.&16&.&.\\ .&.&.&.&0\end{bmatrix}\] $\textbf{(A) } 19 \qquad \textbf{(B) } 24 \qquad \textbf{(C) } 29 \qquad \textbf{(D) } 34 \qquad \textbf{(E) } 39$

Solution

\[\begin{bmatrix} 12 & 29 &46&63&80 \\ 12&24&36&48&60\\ 12&19&26&33&40\\ 12&14&16&18&20\\ 12&9&6&3&0\end{bmatrix}\]

-submitted by Astingo

See also

2024 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png