Difference between revisions of "2003 AIME I Problems/Problem 1"

m
(Solution)
Line 11: Line 11:
 
<center><math> \frac{((3!)!)!}{3!} = \frac{(6!)!}{3!} = \frac{720!}{3!} = \frac{720!}{6} = \frac{720 \cdot 719!}{6} = 120 \cdot 719! = k \cdot n! </math></center>
 
<center><math> \frac{((3!)!)!}{3!} = \frac{(6!)!}{3!} = \frac{720!}{3!} = \frac{720!}{6} = \frac{720 \cdot 719!}{6} = 120 \cdot 719! = k \cdot n! </math></center>
  
We certainly can't make <math>n</math> any larger if <math>k</math> is going to stay an integer, so the answer is <math> k + n = 120 + 719 = 839 </math>.
+
We certainly can't make <math>n</math> any larger if <math>k</math> is going to stay an integer, so the answer is <math> k + n = 120 + 719 = \boxed{839} </math>.
  
 
== See also ==
 
== See also ==

Revision as of 18:03, 23 May 2008

Problem

Given that

$\frac{((3!)!)!}{3!} = k \cdot n!,$

where $k$ and $n$ are positive integers and $n$ is as large as possible, find $k + n.$

Solution

We use the definition of a factorial to get

$\frac{((3!)!)!}{3!} = \frac{(6!)!}{3!} = \frac{720!}{3!} = \frac{720!}{6} = \frac{720 \cdot 719!}{6} = 120 \cdot 719! = k \cdot n!$

We certainly can't make $n$ any larger if $k$ is going to stay an integer, so the answer is $k + n = 120 + 719 = \boxed{839}$.

See also

2002 AIME I (ProblemsAnswer KeyResources)
Preceded by
First Question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions