Difference between revisions of "2001 AIME II Problems/Problem 14"
m (fixed typo) |
(alternative approach) |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | There are <math>2n</math> complex | + | There are <math>2n</math> [[complex number]]s that satisfy both <math>z^{28} - z^{8} - 1 = 0</math> and <math>\mid z \mid = 1</math>. These numbers have the form <math>z_{m} = \cos\theta_{m} + i\sin\theta_{m}</math>, where <math>0\leq\theta_{1} < \theta_{2} < \ldots < \theta_{2n} < 360</math> and angles are measured in degrees. Find the value of <math>\theta_{2} + \theta_{4} + \ldots + \theta_{2n}</math>. |
+ | __TOC__ | ||
== Solution == | == Solution == | ||
− | To satisfy <math>z^{28} - z^{8} - 1 = 0</math>, <math>Im(z^{28})=Im(z^{8})</math> and <math>Re(z^{28})=Re(z^{8})+1</math>. | + | === Solution 1 === |
+ | To satisfy <math>z^{28} - z^{8} - 1 = 0</math>, <math>\text{Im}\,(z^{28})=\text{Im}\,(z^{8})</math> and <math>\text{Re}\,(z^{28})=\text{Re}\,(z^{8})+1</math>. | ||
− | Since <math>\mid z \mid = 1</math>, <math>z</math> is on the unit circle centered at the origin in the complex plane. | + | Since <math>\mid z \mid = 1</math>, <math>z</math> is on the [[unit circle]] centered at the origin in the [[complex plane]]. |
− | Since <math>Im(z^{28})=Im(z^{8})</math>, <math>z^{28}</math> and <math>z^8</math> have the same <math>y</math> coordinate. | + | Since <math>\text{Im}\,(z^{28})=\text{Im}\,(z^{8})</math>, <math>z^{28}</math> and <math>z^8</math> have the same <math>y</math> coordinate. Since <math>\text{Re}\,(z^{28})=\text{Re}\,(z^{8})+1</math>, <math>z^{28}</math> is <math>1</math> unit to the right of <math>z^{8}</math>. It is easy to see that the only possibilities are <math>(z^{28},z^{8})=(\text{cis}\,(60),\text{cis}\,(120))</math> or <math>(\text{cis}\,{(300)},\text{cis}\,{(240)})</math>. |
− | + | <center><asy> | |
− | + | pathpen = black+linewidth(0.7); pen l = linewidth(0.6); | |
− | + | D(unitcircle); D((-1.5,0)--(1.5,0),l,Arrows(5)); D((0,-1.5)--(0,1.5),l,Arrows(5)); | |
+ | D(D(expi(pi/3))--D(expi(2*pi/3)),EndArrow(3)); D(D(expi(4*pi/3)) -- D(expi(5*pi/3)),BeginArrow(3)); | ||
+ | MP("1",(0.5,0));MP("1",(0,3^.5/2),SE);MP("\mathrm{cis}60",expi(1*pi/3),NE);MP("\mathrm{cis}120",expi(2*pi/3),NW);MP("\mathrm{cis}240",expi(4*pi/3),SW);MP("\mathrm{cis}300",expi(5*pi/3),SE); | ||
+ | </asy></center> | ||
For the first possibility: | For the first possibility: | ||
− | < | + | <cmath> |
− | + | \begin{align*} | |
− | + | z^{28}=\text{cis}\,(28\theta)=\text{cis}\,(60) \Rightarrow 28\theta \equiv 60 \pmod{360} &\Rightarrow \theta \equiv 15 \pmod{90} \\ | |
+ | z^{8}=\text{cis}\,(8\theta)=\text{cis}\,(120) \Rightarrow 8\theta \equiv 120 \pmod{360} &\Rightarrow \theta \equiv 15 \pmod{45} \end{align*}</cmath> | ||
Thus, <math>\theta \equiv 15 \pmod{90}</math>. This yields <math>\theta = 15, 105, 195, 285</math>. | Thus, <math>\theta \equiv 15 \pmod{90}</math>. This yields <math>\theta = 15, 105, 195, 285</math>. | ||
Line 23: | Line 29: | ||
For the second possibility: | For the second possibility: | ||
− | < | + | <cmath> \begin{align*} |
− | + | z^{28}=\text{cis}\,(28\theta)=\text{cis}\,(300) \Rightarrow 28\theta \equiv 300 \pmod{360} &\Rightarrow \theta \equiv 75 \pmod{90} \\ | |
− | + | z^{8}=\text{cis}\,(8\theta)=\text{cis}\,(240) \Rightarrow 8\theta \equiv 240 \pmod{360} &\Rightarrow \theta \equiv 30 \pmod{45} \end{align*}</cmath> | |
Thus, <math>\theta \equiv 75 \pmod{90}</math>. This yields <math>\theta = 75, 165, 255, 345</math>. | Thus, <math>\theta \equiv 75 \pmod{90}</math>. This yields <math>\theta = 75, 165, 255, 345</math>. | ||
Therefore <math>(\theta_1,\theta_2,\theta_3,\theta_4,\theta_5,\theta_6,\theta_7,\theta_8)=(15,75,105,165,195,255,285,345)</math> and <math>\theta_2+\theta_4+\theta_6+\theta_8=\boxed{840}</math>. | Therefore <math>(\theta_1,\theta_2,\theta_3,\theta_4,\theta_5,\theta_6,\theta_7,\theta_8)=(15,75,105,165,195,255,285,345)</math> and <math>\theta_2+\theta_4+\theta_6+\theta_8=\boxed{840}</math>. | ||
+ | |||
+ | === Solution 2 === | ||
+ | Rearrange the given equation as <math>z^8\left(z^{20}-1\right) = 1</math>; the magnitudes of both sides must be equal, so | ||
+ | |||
+ | <cmath>\left|z^8\left(z^{20}-1\right)\right| = \left|z^{20}-1\right| = \left| 1 \right| = 1</cmath> | ||
+ | |||
+ | Thus the distance between <math>z^{20} = \text{cis}\, 20\theta </math> and <math>(1,0)</math> on the coordinate plane is <math>1</math>. By the distance formula, | ||
+ | |||
+ | <cmath>1 = \sqrt{(\cos 20\theta - 1)^2 + \sin ^2 20\theta} = \sqrt{2 - 2 \cos 20\theta} \Longrightarrow \cos 20\theta = \frac 12</cmath> | ||
+ | |||
+ | And <math>20\theta = 60, 300 + 360n</math>, while <math>z^{20} - 1 = \frac{1}{2} \pm \frac{\sqrt{3}}{2}i - 1 = \text{cis}\,(120,240)</math>. Thus <math>z^8 = \frac{1}{z^{20}-1} = \text{cis}^{-1}\, \{120,240\} = \text{cis}\,\{240,120\}</math>. We thus have <math>20\theta = 60 + 360n</math> and <math>8\theta = 240 + 360n</math> or <math>20\theta = 300 + 360n</math> and <math>8\theta = 120 + 360n</math>. From here, follow the above solution. | ||
== See also == | == See also == | ||
{{AIME box|year=2001|n=II|num-b=13|num-a=15}} | {{AIME box|year=2001|n=II|num-b=13|num-a=15}} | ||
+ | |||
+ | [[Category:Intermediate Algebra Problems]] |
Revision as of 08:18, 27 July 2008
Problem
There are complex numbers that satisfy both and . These numbers have the form , where and angles are measured in degrees. Find the value of .
Solution
Solution 1
To satisfy , and .
Since , is on the unit circle centered at the origin in the complex plane.
Since , and have the same coordinate. Since , is unit to the right of . It is easy to see that the only possibilities are or .
For the first possibility:
Thus, . This yields .
For the second possibility:
Thus, . This yields .
Therefore and .
Solution 2
Rearrange the given equation as ; the magnitudes of both sides must be equal, so
Thus the distance between and on the coordinate plane is . By the distance formula,
And , while . Thus . We thus have and or and . From here, follow the above solution.
See also
2001 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |