Difference between revisions of "1996 AIME Problems/Problem 15"
(solutions, (2) by Altheman) |
m (→Solution 1: forgot <asy>) |
||
Line 5: | Line 5: | ||
== Solution == | == Solution == | ||
=== Solution 1 === | === Solution 1 === | ||
− | <center><asy> | + | <center><asy>size(180); pathpen = black+linewidth(0.7); |
− | + | pair B=(0,0), A=expi(pi/4), C=IP(A--A + 2*expi(17*pi/12), B--(3,0)), D=A+C, O=IP(A--C,B--D); | |
+ | D(MP("A",A,N)--MP("B",B)--MP("C",C)--MP("D",D,N)--cycle); D(B--D); D(A--C); D(MP("O",O,SE)); | ||
+ | D(anglemark(D,B,A,4));D(anglemark(B,A,C,3.5));D(anglemark(B,A,C,4.5));D(anglemark(C,B,D,3.5));D(anglemark(C,B,D,4.5)); | ||
</asy></center> | </asy></center> | ||
− | Let <math>\theta = \angle DBA</math>. Then <math>\angle CAB = \angle | + | Let <math>\theta = \angle DBA</math>. Then <math>\angle CAB = \angle DBC = 2\theta</math>, <math>\angle AOB = 180 - 3\theta</math>, and <math>\angle ACB = 180 - 5\theta</math>. Since <math>ABCD</math> is a parallelogram, it follows that <math>OA = OC</math>. By the [[Law of Sines]] on <math>\triangle ABO,\, \triangle BCO</math>, |
<center><math>\frac{\sin \angle CBO}{OC} = \frac{\sin \angle ACB}{OB} \quad \text{and} \quad \frac{\sin \angle DBA}{OC} = \frac{\sin \angle BAC}{OB}.</math></center> | <center><math>\frac{\sin \angle CBO}{OC} = \frac{\sin \angle ACB}{OB} \quad \text{and} \quad \frac{\sin \angle DBA}{OC} = \frac{\sin \angle BAC}{OB}.</math></center> |
Revision as of 22:15, 13 August 2008
Problem
In parallelogram , let
be the intersection of diagonals
and
. Angles
and
are each twice as large as angle
, and angle
is
times as large as angle
. Find the greatest integer that does not exceed
.
Contents
[hide]Solution
Solution 1
![[asy]size(180); pathpen = black+linewidth(0.7); pair B=(0,0), A=expi(pi/4), C=IP(A--A + 2*expi(17*pi/12), B--(3,0)), D=A+C, O=IP(A--C,B--D); D(MP("A",A,N)--MP("B",B)--MP("C",C)--MP("D",D,N)--cycle); D(B--D); D(A--C); D(MP("O",O,SE)); D(anglemark(D,B,A,4));D(anglemark(B,A,C,3.5));D(anglemark(B,A,C,4.5));D(anglemark(C,B,D,3.5));D(anglemark(C,B,D,4.5)); [/asy]](http://latex.artofproblemsolving.com/d/0/9/d09e1f91df6f1a2f004955349478e82b4cf67dad.png)
Let . Then
,
, and
. Since
is a parallelogram, it follows that
. By the Law of Sines on
,

Dividing the two equalities yields
Pythagorean and product-to-sum identities yield
and the double and triple angle () formulas further simplify this to
The only value of that fits in this context comes from
. The answer is
.
Solution 2
We will focus on . Let
, so
. Draw the perpendicular from
intersecting
at
. Without loss of generality, let
. Then
, since
is the circumcenter of
. Then
.
By the Exterior Angle Theorem, and
. That implies that
. That makes
. Then since by AA (
and reflexive on
),
.

Then by the Pythagorean Theorem, . That makes
equilateral. Then
. Then
and
.
Then . Then it follows that
.
See also
1996 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Final Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |