Difference between revisions of "2002 AMC 10A Problems/Problem 5"
m (enter problem) |
(No difference)
|
Revision as of 21:48, 26 December 2008
Problem
Each of the small circles in the figure has radius one. The innermost circle is tangent to the six circles that surround it, and each of those circles is tangent to the large circle and to its small-circle neighbors. Find the area of the shaded region.
Solution
The outer circle has radius , and thus area . The little circles have area each; since there are 7, their total area is . Thus, our answer is .
See Also
2002 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 4 |
Followed by Problem 6 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |