GET READY FOR THE AMC 10 WITH AoPS
Learn with outstanding instructors and top-scoring students from around the world in our
AMC 10 Problem Series online course.
Difference between revisions of "2002 AMC 10B Problems"
(→Problem 1: fixed LaTeX) |
(LaTeXed some of the multiple choices) |
||
Line 2: | Line 2: | ||
The ratio <math>\frac{2^{2001}\cdot3^{2003}}{6^{2002}}</math> is: | The ratio <math>\frac{2^{2001}\cdot3^{2003}}{6^{2002}}</math> is: | ||
− | (A) 1/6 (B) 1/3 (C) 1/2 (D) 2/3 (E) 3/2 | + | <math> \mathrm{(A) \ } 1/6\qquad \mathrm{(B) \ } 1/3\qquad \mathrm{(C) \ } 1/2\qquad \mathrm{(D) \ } 2/3\qquad \mathrm{(E) \ } 3/2 </math> |
[[2002 AMC 10B Problems/Problem 1|Solution]] | [[2002 AMC 10B Problems/Problem 1|Solution]] | ||
Line 12: | Line 12: | ||
Find <math>(2,4,6)</math>. | Find <math>(2,4,6)</math>. | ||
− | + | <math> \mathrm{(A) \ } 1\qquad \mathrm{(B) \ } 2\qquad \mathrm{(C) \ } 4\qquad \mathrm{(D) \ } 6\qquad \mathrm{(E) \ } 24 </math> | |
− | (A) 1 (B) 2 (C) 4 (D) 6 (E) 24 | ||
[[2002 AMC 10B Problems/Problem 2|Solution]] | [[2002 AMC 10B Problems/Problem 2|Solution]] |
Revision as of 23:38, 29 December 2008
Contents
- 1 Problem 1
- 2 Problem 2
- 3 Problem 3
- 4 Problem 4
- 5 Problem 5
- 6 Problem 6
- 7 Problem 7
- 8 Problem 8
- 9 Problem 9
- 10 Problem 10
- 11 Problem 11
- 12 Problem 12
- 13 Problem 13
- 14 Problem 14
- 15 Problem 15
- 16 Problem 16
- 17 Problem 17
- 18 Problem 18
- 19 Problem 19
- 20 Problem 20
- 21 Problem 21
- 22 Problem 22
- 23 Problem 23
- 24 Problem 24
- 25 Problem 25
- 26 See also
Problem 1
The ratio is:
Problem 2
For the nonzero numbers a, b, and c, define
Find .