GET READY FOR THE AMC 10 WITH AoPS
Learn with outstanding instructors and top-scoring students from around the world in our
AMC 10 Problem Series online course.
Difference between revisions of "2002 AMC 10B Problems"
(Added Problems 3, 4, 6, and 7) |
(LaTeXed multiple choice) |
||
Line 12: | Line 12: | ||
Find <math>(2,4,6)</math>. | Find <math>(2,4,6)</math>. | ||
+ | |||
<math> \mathrm{(A) \ } 1\qquad \mathrm{(B) \ } 2\qquad \mathrm{(C) \ } 4\qquad \mathrm{(D) \ } 6\qquad \mathrm{(E) \ } 24 </math> | <math> \mathrm{(A) \ } 1\qquad \mathrm{(B) \ } 2\qquad \mathrm{(C) \ } 4\qquad \mathrm{(D) \ } 6\qquad \mathrm{(E) \ } 24 </math> | ||
Line 19: | Line 20: | ||
The arithmetic mean of the nine numbers in the set <math>\{9,99,999,9999,\ldots,999999999\}</math> is a 9-digit number <math>M</math>, all of whose digits are distinct. The number <math>M</math> does not contain the digit | The arithmetic mean of the nine numbers in the set <math>\{9,99,999,9999,\ldots,999999999\}</math> is a 9-digit number <math>M</math>, all of whose digits are distinct. The number <math>M</math> does not contain the digit | ||
− | (A) 0 (B) 2 (C) 4 (D) 6 (E) 8 | + | <math> \mathrm{(A) \ } 0\qquad \mathrm{(B) \ } 2\qquad \mathrm{(C) \ } 4\qquad \mathrm{(D) \ } 6\qquad \mathrm{(E) \ } 8 </math> |
[[2002 AMC 10B Problems/Problem 3|Solution]] | [[2002 AMC 10B Problems/Problem 3|Solution]] | ||
Line 31: | Line 32: | ||
when <math>x=4</math>? | when <math>x=4</math>? | ||
− | (A) 0 (B) 1 (C) 10 (D) 11 (E) 12 | + | <math> \mathrm{(A) \ } 0\qquad \mathrm{(B) \ } 1\qquad \mathrm{(C) \ } 10\qquad \mathrm{(D) \ } 11\qquad \mathrm{(E) \ } 12 </math> |
[[2002 AMC 10B Problems/Problem 4|Solution]] | [[2002 AMC 10B Problems/Problem 4|Solution]] | ||
Line 43: | Line 44: | ||
For how many positive integers n is <math>n^2-3n+2</math> a prime number? | For how many positive integers n is <math>n^2-3n+2</math> a prime number? | ||
− | (A) none (B) one (C) two (D) more than two, but finitely many (E) infinitely many | + | <math> \mathrm{(A) \ } \text{none}\qquad \mathrm{(B) \ } \text{one}\qquad \mathrm{(C) \ } \text{two}\qquad \mathrm{(D) \ } \text{more than two, but finitely many}\qquad \mathrm{(E) \ } \text{infinitely many} </math> |
[[2002 AMC 10B Problems/Problem 6|Solution]] | [[2002 AMC 10B Problems/Problem 6|Solution]] | ||
Line 51: | Line 52: | ||
Let <math>n</math> be a positive integer such that <math>\frac{1}{2}+\frac{1}{3}+\frac{1}{7}+\frac{1}{n}</math> is an integer. Which of the following statements is '''not''' true? | Let <math>n</math> be a positive integer such that <math>\frac{1}{2}+\frac{1}{3}+\frac{1}{7}+\frac{1}{n}</math> is an integer. Which of the following statements is '''not''' true? | ||
− | (A) 2 divides n (B) 3 divides n (C) 6 divides n (D) 7 divides n (E) | + | <math> \mathrm{(A) \ } 2\text{ divides }n\qquad \mathrm{(B) \ } 3\text{ divides }n\qquad \mathrm{(C) \ } 6\text{ divides }n\qquad \mathrm{(D) \ } 7\text{ divides }n\qquad \mathrm{(E) \ } n>84 </math> |
[[2002 AMC 10B Problems/Problem 7|Solution]] | [[2002 AMC 10B Problems/Problem 7|Solution]] |
Revision as of 00:07, 30 December 2008
Contents
- 1 Problem 1
- 2 Problem 2
- 3 Problem 3
- 4 Problem 4
- 5 Problem 5
- 6 Problem 6
- 7 Problem 7
- 8 Problem 8
- 9 Problem 9
- 10 Problem 10
- 11 Problem 11
- 12 Problem 12
- 13 Problem 13
- 14 Problem 14
- 15 Problem 15
- 16 Problem 16
- 17 Problem 17
- 18 Problem 18
- 19 Problem 19
- 20 Problem 20
- 21 Problem 21
- 22 Problem 22
- 23 Problem 23
- 24 Problem 24
- 25 Problem 25
- 26 See also
Problem 1
The ratio is:
Problem 2
For the nonzero numbers a, b, and c, define
Find .
Problem 3
The arithmetic mean of the nine numbers in the set is a 9-digit number , all of whose digits are distinct. The number does not contain the digit
Problem 4
What is the value of
when ?
Problem 5
Problem 6
For how many positive integers n is a prime number?
Problem 7
Let be a positive integer such that is an integer. Which of the following statements is not true?