GET READY FOR THE AMC 10 WITH AoPS
Learn with outstanding instructors and top-scoring students from around the world in our AMC 10 Problem Series online course.
CHECK SCHEDULE

Difference between revisions of "2002 AMC 10B Problems"

(LaTeXed multiple choice)
(Added Problems 8, 9, 10, 11, 14, 15, 22)
Line 57: Line 57:
  
 
== Problem 8 ==
 
== Problem 8 ==
 +
 +
Suppose July of year <math>N</math> has five Mondays. Which of the following must occurs five times in the August of year <math>N</math>? (Note: Both months have <math>31</math> days.)
 +
 +
<math>\textbf{(A)}\ \text{Monday} \qquad \textbf{(B)}\ \text{Tuesday} \qquad \textbf{(C)}\ \text{Wednesday} \qquad \textbf{(D)}\ \text{Thursday} \qquad \textbf{(E)}\ \text{Friday}</math>
  
 
[[2002 AMC 10B Problems/Problem 8|Solution]]
 
[[2002 AMC 10B Problems/Problem 8|Solution]]
  
 
== Problem 9 ==
 
== Problem 9 ==
 +
 +
Using the letters <math>A</math>, <math>M</math>, <math>O</math>, <math>S</math>, and <math>U</math>, we can form five-letter "words". If these "words" are arranged in alphabetical order, then the "word" <math>USAMO</math> occupies position
 +
 +
<math> \mathrm{(A) \ } 112\qquad \mathrm{(B) \ } 113\qquad \mathrm{(C) \ } 114\qquad \mathrm{(D) \ } 115\qquad \mathrm{(E) \ } 116 </math>
  
 
[[2002 AMC 10B Problems/Problem 9|Solution]]
 
[[2002 AMC 10B Problems/Problem 9|Solution]]
  
 
== Problem 10 ==
 
== Problem 10 ==
 +
 +
Suppose that <math>a</math> and <math>b</math> are nonzero real numbers, and that the equation <math>x^2+ax+b=0</math> has positive solutions <math>a</math> and <math>b</math>. Then the pair <math>(a,b)</math> is
 +
 +
<math> \mathrm{(A) \ } (-2,1)\qquad \mathrm{(B) \ } (-1,2)\qquad \mathrm{(C) \ } (1,-2)\qquad \mathrm{(D) \ } (2,-1)\qquad \mathrm{(E) \ } (4,4) </math>
  
 
[[2002 AMC 10B Problems/Problem 10|Solution]]
 
[[2002 AMC 10B Problems/Problem 10|Solution]]
  
 
== Problem 11 ==
 
== Problem 11 ==
 +
 +
The product of three consecutive positive integers is <math>8</math> times their sum. What is the sum of the squares?
 +
 +
<math> \mathrm{(A) \ } 50\qquad \mathrm{(B) \ } 77\qquad \mathrm{(C) \ } 110\qquad \mathrm{(D) \ } 149\qquad \mathrm{(E) \ } 194 </math>
  
 
[[2002 AMC 10B Problems/Problem 11|Solution]]
 
[[2002 AMC 10B Problems/Problem 11|Solution]]
Line 81: Line 97:
  
 
== Problem 14 ==
 
== Problem 14 ==
 +
 +
The number <math>25^{64}\cdot 64^{25}</math> is the square of a positive integer <math>N</math>. In decimal representation, the sum of the digits of <math>N</math> is
 +
 +
<math> \mathrm{(A) \ } 7\qquad \mathrm{(B) \ } 14\qquad \mathrm{(C) \ } 21\qquad \mathrm{(D) \ } 28\qquad \mathrm{(E) \ } 35 </math>
  
 
[[2002 AMC 10B Problems/Problem 14|Solution]]
 
[[2002 AMC 10B Problems/Problem 14|Solution]]
  
 
== Problem 15 ==
 
== Problem 15 ==
 +
 +
The positive integers <math>A</math>, <math>B</math>, <math>A-B</math>, and <math>A+B</math> are all prime numbers. The sum of these four primes is
 +
 +
<math> \mathrm{(A) \ } \text{even}\qquad \mathrm{(B) \ } \text{divisible by }3\qquad \mathrm{(C) \ } \text{divisible by }5\qquad \mathrm{(D) \ } \text{divisible by }7\qquad \mathrm{(E) \ } \text{prime}</math>
  
 
[[2002 AMC 10B Problems/Problem 15|Solution]]
 
[[2002 AMC 10B Problems/Problem 15|Solution]]
Line 113: Line 137:
  
 
== Problem 22 ==
 
== Problem 22 ==
 +
 +
Let <math>\triangle{XOY}</math> be a right-triangle with <math>m\angle{XOY}=90^\circ</math>. Let <math>M</math> and <math>N</math> be the midpoints of the legs <math>OX</math> and <math>OY</math>, respectively. Given <math>XN=19</math> and <math>YM=22</math>, find <math>XY</math>.
 +
 +
<math> \mathrm{(A) \ } 24\qquad \mathrm{(B) \ } 26\qquad \mathrm{(C) \ } 28\qquad \mathrm{(D) \ } 30\qquad \mathrm{(E) \ } 32 </math>
  
 
[[2002 AMC 10B Problems/Problem 22|Solution]]
 
[[2002 AMC 10B Problems/Problem 22|Solution]]

Revision as of 00:15, 30 December 2008

Problem 1

The ratio $\frac{2^{2001}\cdot3^{2003}}{6^{2002}}$ is:

$\mathrm{(A) \ } 1/6\qquad \mathrm{(B) \ } 1/3\qquad \mathrm{(C) \ } 1/2\qquad \mathrm{(D) \ } 2/3\qquad \mathrm{(E) \ } 3/2$

Solution

Problem 2

For the nonzero numbers a, b, and c, define

$(a,b,c)=\frac{abc}{a+b+c}$

Find $(2,4,6)$.

$\mathrm{(A) \ } 1\qquad \mathrm{(B) \ } 2\qquad \mathrm{(C) \ } 4\qquad \mathrm{(D) \ } 6\qquad \mathrm{(E) \ } 24$

Solution

Problem 3

The arithmetic mean of the nine numbers in the set $\{9,99,999,9999,\ldots,999999999\}$ is a 9-digit number $M$, all of whose digits are distinct. The number $M$ does not contain the digit

$\mathrm{(A) \ } 0\qquad \mathrm{(B) \ } 2\qquad \mathrm{(C) \ } 4\qquad \mathrm{(D) \ } 6\qquad \mathrm{(E) \ } 8$

Solution

Problem 4

What is the value of

$(3x-2)(4x+1)-(3x-2)4x+1$

when $x=4$?

$\mathrm{(A) \ } 0\qquad \mathrm{(B) \ } 1\qquad \mathrm{(C) \ } 10\qquad \mathrm{(D) \ } 11\qquad \mathrm{(E) \ } 12$

Solution

Problem 5

Solution

Problem 6

For how many positive integers n is $n^2-3n+2$ a prime number?

$\mathrm{(A) \ } \text{none}\qquad \mathrm{(B) \ } \text{one}\qquad \mathrm{(C) \ } \text{two}\qquad \mathrm{(D) \ } \text{more than two, but finitely many}\qquad \mathrm{(E) \ } \text{infinitely many}$

Solution

Problem 7

Let $n$ be a positive integer such that $\frac{1}{2}+\frac{1}{3}+\frac{1}{7}+\frac{1}{n}$ is an integer. Which of the following statements is not true?

$\mathrm{(A) \ } 2\text{ divides }n\qquad \mathrm{(B) \ } 3\text{ divides }n\qquad \mathrm{(C) \ } 6\text{ divides }n\qquad \mathrm{(D) \ } 7\text{ divides }n\qquad \mathrm{(E) \ } n>84$

Solution

Problem 8

Suppose July of year $N$ has five Mondays. Which of the following must occurs five times in the August of year $N$? (Note: Both months have $31$ days.)

$\textbf{(A)}\ \text{Monday} \qquad \textbf{(B)}\ \text{Tuesday} \qquad \textbf{(C)}\ \text{Wednesday} \qquad \textbf{(D)}\ \text{Thursday} \qquad \textbf{(E)}\ \text{Friday}$

Solution

Problem 9

Using the letters $A$, $M$, $O$, $S$, and $U$, we can form five-letter "words". If these "words" are arranged in alphabetical order, then the "word" $USAMO$ occupies position

$\mathrm{(A) \ } 112\qquad \mathrm{(B) \ } 113\qquad \mathrm{(C) \ } 114\qquad \mathrm{(D) \ } 115\qquad \mathrm{(E) \ } 116$

Solution

Problem 10

Suppose that $a$ and $b$ are nonzero real numbers, and that the equation $x^2+ax+b=0$ has positive solutions $a$ and $b$. Then the pair $(a,b)$ is

$\mathrm{(A) \ } (-2,1)\qquad \mathrm{(B) \ } (-1,2)\qquad \mathrm{(C) \ } (1,-2)\qquad \mathrm{(D) \ } (2,-1)\qquad \mathrm{(E) \ } (4,4)$

Solution

Problem 11

The product of three consecutive positive integers is $8$ times their sum. What is the sum of the squares?

$\mathrm{(A) \ } 50\qquad \mathrm{(B) \ } 77\qquad \mathrm{(C) \ } 110\qquad \mathrm{(D) \ } 149\qquad \mathrm{(E) \ } 194$

Solution

Problem 12

Solution

Problem 13

Solution

Problem 14

The number $25^{64}\cdot 64^{25}$ is the square of a positive integer $N$. In decimal representation, the sum of the digits of $N$ is

$\mathrm{(A) \ } 7\qquad \mathrm{(B) \ } 14\qquad \mathrm{(C) \ } 21\qquad \mathrm{(D) \ } 28\qquad \mathrm{(E) \ } 35$

Solution

Problem 15

The positive integers $A$, $B$, $A-B$, and $A+B$ are all prime numbers. The sum of these four primes is

$\mathrm{(A) \ } \text{even}\qquad \mathrm{(B) \ } \text{divisible by }3\qquad \mathrm{(C) \ } \text{divisible by }5\qquad \mathrm{(D) \ } \text{divisible by }7\qquad \mathrm{(E) \ } \text{prime}$

Solution

Problem 16

Solution

Problem 17

Solution

Problem 18

Solution

Problem 19

Solution

Problem 20

Solution

Problem 21

Solution

Problem 22

Let $\triangle{XOY}$ be a right-triangle with $m\angle{XOY}=90^\circ$. Let $M$ and $N$ be the midpoints of the legs $OX$ and $OY$, respectively. Given $XN=19$ and $YM=22$, find $XY$.

$\mathrm{(A) \ } 24\qquad \mathrm{(B) \ } 26\qquad \mathrm{(C) \ } 28\qquad \mathrm{(D) \ } 30\qquad \mathrm{(E) \ } 32$

Solution

Problem 23

Solution

Problem 24

Solution

Problem 25

Solution

See also