Difference between revisions of "1998 AHSME Problems/Problem 8"

(solution)
 
m (Solution: Alternate solution)
Line 10: Line 10:
  
 
== Solution ==
 
== Solution ==
 +
 +
===Solution 1===
 +
 
<center><asy>
 
<center><asy>
 
pointpen = black; pathpen = black;
 
pointpen = black; pathpen = black;
Line 16: Line 19:
  
 
Then <math>2[I]+2[II] = [I]+3[II] \Longrightarrow [I]=[II]</math>. Let the shorter side of <math>I</math> be <math>m</math> and the base of <math>II</math> be <math>n</math> such that <math>m+2n = x</math>; then <math>[I]=[II]</math> implies that <math>2m=n</math>, and since <math>2m + 2n = 1</math> it follows that <math>m = \frac 16</math> and <math>x = \frac 56 \Longrightarrow \mathbf{(D)}</math>.
 
Then <math>2[I]+2[II] = [I]+3[II] \Longrightarrow [I]=[II]</math>. Let the shorter side of <math>I</math> be <math>m</math> and the base of <math>II</math> be <math>n</math> such that <math>m+2n = x</math>; then <math>[I]=[II]</math> implies that <math>2m=n</math>, and since <math>2m + 2n = 1</math> it follows that <math>m = \frac 16</math> and <math>x = \frac 56 \Longrightarrow \mathbf{(D)}</math>.
 +
 +
===Solution 2===
 +
 +
The area of the trapezoid is <math>\frac{1}{3}</math>, and the shorter base and height are both <math>\frac{1}{2}</math>.  Therefore, <cmath>\frac{1}{3}=\frac{1}{2}\cdot \frac{1}{2}\cdot \left(\frac{1}{2}+x\right) \Rightarrow x=\frac{5}{6}\rightarrow \boxed{\text{D}}</cmath>
  
 
== See also ==
 
== See also ==

Revision as of 12:56, 23 April 2009

Problem

A square with sides of length $1$ is divided into two congruent trapezoids and a pentagon, which have equal areas, by joining the center of the square with points on three of the sides, as shown. Find $x$, the length of the longer parallel side of each trapezoid.

[asy] pointpen = black; pathpen = black; D(unitsquare); D((0,0)); D((1,0)); D((1,1)); D((0,1)); D(D((.5,.5))--D((1,.5))); D(D((.17,1))--(.5,.5)--D((.17,0))); MP("x",(.58,1),N); [/asy]

$\mathrm{(A) \ } \frac 35 \qquad \mathrm{(B) \ } \frac 23 \qquad \mathrm{(C) \ } \frac 34 \qquad \mathrm{(D) \ } \frac 56 \qquad \mathrm{(E) \ } \frac  78$

Solution

Solution 1

[asy] pointpen = black; pathpen = black; D(unitsquare); D((0,0)); D((1,0)); D((1,1)); D((0,1)); D(D((.5,.5))--D((1,.5))); D(D((.17,1))--(.5,.5)--D((.5,1)));D(D((1-.17,1))--(.5,.5)--D((.17,0))); D((.17,1)--(.17,0));D((1-.17,1)--(1-.17,.5));D((0,.5)--(.5,.5)); MP("x",(.58,1),N); MP("I",(.17/2,.25),(0,0));MP("I",(.17/2,.75),(0,0));MP("I",(1-.17/2,.75),(0,0));MP("II",(.5-.17,.4),(0,0));MP("II",(.5-.17,.6),(0,0));MP("II",(.5-.17,.9),(0,0));MP("II",(.5+.17,.9),(0,0));MP("II",(.5+.17,.6),(0,0)); [/asy]

Then $2[I]+2[II] = [I]+3[II] \Longrightarrow [I]=[II]$. Let the shorter side of $I$ be $m$ and the base of $II$ be $n$ such that $m+2n = x$; then $[I]=[II]$ implies that $2m=n$, and since $2m + 2n = 1$ it follows that $m = \frac 16$ and $x = \frac 56 \Longrightarrow \mathbf{(D)}$.

Solution 2

The area of the trapezoid is $\frac{1}{3}$, and the shorter base and height are both $\frac{1}{2}$. Therefore, \[\frac{1}{3}=\frac{1}{2}\cdot \frac{1}{2}\cdot \left(\frac{1}{2}+x\right) \Rightarrow x=\frac{5}{6}\rightarrow \boxed{\text{D}}\]

See also

1998 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 26
Followed by
Problem 28
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions