Difference between revisions of "1950 AHSME Problems"

(Created page with "== Problem 1 == Solution == Problem 2 == Solution == Problem 3 == [[1950 AHSME Problems/Problem 3|Solutio...")
 
Line 1: Line 1:
 
== Problem 1 ==
 
== Problem 1 ==
 +
 +
If <math>64</math> is divided into three parts proportional to <math>2</math>, <math>4</math>, and <math>6</math>, the smallest part is:
 +
 +
<math> \textbf{(A)}\ 5\frac{1}{3}\qquad\textbf{(B)}\ 11\qquad\textbf{(C)}\ 10\frac{2}{3}\qquad\textbf{(D)}\ 5\qquad\textbf{(E)}\ \text{None of these answers} </math>
  
 
[[1950 AHSME Problems/Problem 1|Solution]]
 
[[1950 AHSME Problems/Problem 1|Solution]]
  
 
== Problem 2 ==
 
== Problem 2 ==
 +
 +
Let <math> R=gS-4 </math>. When <math>S=8</math>, <math>R=16</math>. When <math>S=10</math>, <math>R</math> is equal to:
 +
 +
<math> \textbf{(A)}\ 11\qquad\textbf{(B)}\ 14\qquad\textbf{(C)}\ 20\qquad\textbf{(D)}\ 21\qquad\textbf{(E)}\ \text{None of these} </math>
  
 
[[1950 AHSME Problems/Problem 2|Solution]]
 
[[1950 AHSME Problems/Problem 2|Solution]]
  
 
== Problem 3 ==
 
== Problem 3 ==
 +
 +
The sum of the roots of the equation <math> 4x^{2}+5-8x=0 </math> is equal to:
 +
 +
<math> \textbf{(A)}\ 8\qquad\textbf{(B)}\ -5\qquad\textbf{(C)}\ -\frac{5}{4}\qquad\textbf{(D)}\ -2\qquad\textbf{(E)}\ \text{None of these} </math>
  
 
[[1950 AHSME Problems/Problem 3|Solution]]
 
[[1950 AHSME Problems/Problem 3|Solution]]
  
 
== Problem 4 ==
 
== Problem 4 ==
 +
 +
  
 
[[1950 AHSME Problems/Problem 4|Solution]]
 
[[1950 AHSME Problems/Problem 4|Solution]]

Revision as of 13:20, 30 August 2011

Problem 1

If $64$ is divided into three parts proportional to $2$, $4$, and $6$, the smallest part is:

$\textbf{(A)}\ 5\frac{1}{3}\qquad\textbf{(B)}\ 11\qquad\textbf{(C)}\ 10\frac{2}{3}\qquad\textbf{(D)}\ 5\qquad\textbf{(E)}\ \text{None of these answers}$

Solution

Problem 2

Let $R=gS-4$. When $S=8$, $R=16$. When $S=10$, $R$ is equal to:

$\textbf{(A)}\ 11\qquad\textbf{(B)}\ 14\qquad\textbf{(C)}\ 20\qquad\textbf{(D)}\ 21\qquad\textbf{(E)}\ \text{None of these}$

Solution

Problem 3

The sum of the roots of the equation $4x^{2}+5-8x=0$ is equal to:

$\textbf{(A)}\ 8\qquad\textbf{(B)}\ -5\qquad\textbf{(C)}\ -\frac{5}{4}\qquad\textbf{(D)}\ -2\qquad\textbf{(E)}\ \text{None of these}$

Solution

Problem 4

Solution

Problem 5

Solution

Problem 6

Solution

Problem 7

Solution

Problem 8

Solution

Problem 9

Solution

Problem 10

Solution

Problem 11

Solution

Problem 12

Solution

Problem 13

Solution

Problem 14

Solution

Problem 15

Solution

Problem 16

Solution

Problem 17

Solution

Problem 18

Solution

Problem 19

Solution

Problem 20

Solution

Problem 21

Solution

Problem 22

Solution

Problem 23

Solution

Problem 24

Solution

Problem 25

Solution

Problem 26

Solution

Problem 27

Solution

Problem 28

Solution

Problem 29

Solution

Problem 30

Solution

Problem 31

Solution

Problem 32

Solution

Problem 33

Solution

Problem 34

Solution

Problem 35

Solution

Problem 36

Solution

Problem 37

Solution

Problem 38

Solution

Problem 39

Solution

Problem 40

Solution

Problem 41

Solution

Problem 42

Solution

Problem 43

Solution

Problem 44

Solution

Problem 45

Solution

Problem 46

Solution

Problem 47

Solution

Problem 48

Solution

Problem 49

Solution

Problem 50

Solution