Difference between revisions of "2002 AMC 12A Problems/Problem 24"

(Solution)
(Solution 2)
Line 28: Line 28:
 
== Solution 2 ==
 
== Solution 2 ==
  
As in the other solution, split the problem into when <math>s=0</math> and when <math>s=1</math>. When <math>s=1</math> and <math>a+bi=\cos\theta+\sin\theta</math>, <math>(a+bi)^{2002}= \cos(2002\theta)+i\sin(2002\theta)= \cos\theta-i\sin\theta= \cos(-\theta)+i\sin(-\theta) = a - bi</math>, so we must have <math>2002\theta=-\theta+2\pi k</math> and hence <math>\theta=\frac{2\pi k}{2003}</math>. Since <math>\theta</math> is restricted to <math>[0,2\pi)</math>, <math>k</math> can range from <math>0</math> to <math>2002</math> inclusive, which is <math>2002-0+1=2003</math> values. Thus the total is <math>1+2003 = \boxed{\textbf{(E)}\  2004}</math>.
+
As in the other solution, split the problem into when <math>s=0</math> and when <math>s=1</math>. When <math>s=1</math> and <math>a+bi=\cos\theta+i\sin\theta</math>,
 +
 
 +
<math>(a+bi)^{2002}= \cos(2002\theta)+i\sin(2002\theta) </math> <math> =a-bi= \cos\theta-i\sin\theta= \cos(-\theta)+i\sin(-\theta)</math>
 +
 
 +
so we must have <math>2002\theta=-\theta+2\pi k</math> and hence <math>\theta=\frac{2\pi k}{2003}</math>. Since <math>\theta</math> is restricted to <math>[0,2\pi)</math>, <math>k</math> can range from <math>0</math> to <math>2002</math> inclusive, which is <math>2002-0+1=2003</math> values. Thus the total is <math>1+2003 = \boxed{\textbf{(E)}\  2004}</math>.
  
 
== See Also ==
 
== See Also ==
  
 
{{AMC12 box|year=2002|ab=A|num-b=23|num-a=25}}
 
{{AMC12 box|year=2002|ab=A|num-b=23|num-a=25}}

Revision as of 12:04, 21 February 2012

Problem

Find the number of ordered pairs of real numbers $(a,b)$ such that $(a+bi)^{2002} = a-bi$.

$\text{(A) }1001 \qquad \text{(B) }1002 \qquad \text{(C) }2001 \qquad \text{(D) }2002 \qquad \text{(E) }2004$

Solution

Let $s=\sqrt{a^2+b^2}$ be the magnitude of $a+bi$. Then the magnitude of $(a+bi)^{2002}$ is $s^{2002}$, while the magnitude of $a-bi$ is $s$. We get that $s^{2002}=s$, hence either $s=0$ or $s=1$.

For $s=0$ we get a single solution $(a,b)=(0,0)$.

Let's now assume that $s=1$. Multiply both sides by $a+bi$. The left hand side becomes $(a+bi)^{2003}$, the right hand side becomes $(a-bi)(a+bi)=a^2 + b^2 = 1$. Hence the solutions for this case are precisely all the $2003$rd complex roots of unity, and there are $2003$ of those.

The total number of solutions is therefore $1+2003 = \boxed{2004}$.


Solution 2

As in the other solution, split the problem into when $s=0$ and when $s=1$. When $s=1$ and $a+bi=\cos\theta+i\sin\theta$,

$(a+bi)^{2002}= \cos(2002\theta)+i\sin(2002\theta)$ $=a-bi= \cos\theta-i\sin\theta= \cos(-\theta)+i\sin(-\theta)$

so we must have $2002\theta=-\theta+2\pi k$ and hence $\theta=\frac{2\pi k}{2003}$. Since $\theta$ is restricted to $[0,2\pi)$, $k$ can range from $0$ to $2002$ inclusive, which is $2002-0+1=2003$ values. Thus the total is $1+2003 = \boxed{\textbf{(E)}\  2004}$.

See Also

2002 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions