Difference between revisions of "2011 AMC 8 Problems/Problem 16"
m |
|||
Line 1: | Line 1: | ||
+ | ==Problem== | ||
Let <math>A</math> be the area of the triangle with sides of length <math>25, 25</math>, and <math>30</math>. Let <math>B</math> be the area of the triangle with sides of length <math>25, 25,</math> and <math>40</math>. What is the relationship between <math>A</math> and <math>B</math>? | Let <math>A</math> be the area of the triangle with sides of length <math>25, 25</math>, and <math>30</math>. Let <math>B</math> be the area of the triangle with sides of length <math>25, 25,</math> and <math>40</math>. What is the relationship between <math>A</math> and <math>B</math>? | ||
Revision as of 18:15, 4 November 2012
Problem
Let be the area of the triangle with sides of length , and . Let be the area of the triangle with sides of length and . What is the relationship between and ?
Solution
25-25-30
We can draw the altitude for the side with length 30. By HL Congruence, the two triangles formed are congruent. Thus the altitude splits the side with length 30 into two segments with length 15. By the Pythagorean Theorem, we have
Thus we have two 15-20-25 right triangles.
25-25-40
We can draw the altitude for the side with length 40. By HL Congruence, the two triangles formed are congruent. Thus the altitude splits the side with length 40 into two segments with length 20. From the 25-25-30 case, we know that the other side length is 15, so we have two 15-20-25 right triangles. Let the area of a 15-20-25 right triangle be .
See Also
2011 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 15 |
Followed by Problem 17 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |