Difference between revisions of "2011 AMC 8 Problems/Problem 15"

m (Solution)
Line 1: Line 1:
 +
==Problem==
 
How many digits are in the product <math>4^5 \cdot 5^{10}</math>?
 
How many digits are in the product <math>4^5 \cdot 5^{10}</math>?
  

Revision as of 18:16, 4 November 2012

Problem

How many digits are in the product $4^5 \cdot 5^{10}$?

$\textbf{(A) } 8 \qquad\textbf{(B) } 9 \qquad\textbf{(C) } 10 \qquad\textbf{(D) } 11 \qquad\textbf{(E) } 12$

Solution

\[4^5 \cdot 5^{10} = 2^{10} \cdot 5^{10} = 10^{10}.\]

That is one $1$ followed by ten $0$'s, which is $\boxed{\textbf{(D)}\ 11}$ digits.

See Also

2011 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions