Difference between revisions of "2007 AMC 8 Problems/Problem 15"

(Created page with '== Problem == Let <math>a, b</math> and <math>c</math> be numbers with <math>0 < a < b < c</math>. Which of the following is impossible? <math>\mathrm{(A)} \ a + c < b \qquad …')
 
(Solution)
Line 17: Line 17:
  
 
Therefore, the answer is <math>\boxed{A}</math>
 
Therefore, the answer is <math>\boxed{A}</math>
 +
 +
==See Also==
 +
{{AMC8 box|year=2007|num-b=14|num-a=16}}

Revision as of 22:42, 12 November 2012

Problem

Let $a, b$ and $c$ be numbers with $0 < a < b < c$. Which of the following is impossible?

$\mathrm{(A)} \ a + c < b  \qquad \mathrm{(B)} \ a * b < c \qquad \mathrm{(C)} \ a + b < c \qquad \mathrm{(D)} \ a * c < b \qquad \mathrm{(E)}\frac{b}{c} = a$

Solution

According to the given rules,

Every number needs to be positive.

Since $c$ is always greater than $b$,

adding a positive number ($a$) to $c$ will always make it greater than $b$.

Therefore, the answer is $\boxed{A}$

See Also

2007 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions