Difference between revisions of "2007 AMC 8 Problems/Problem 21"

Line 7: Line 7:
  
 
There's a total of <math>\dbinom{8}{2} = 28</math> ways to choose a pair, so the probability is <math>\dfrac{4+12}{28} = \boxed{\textbf{(D)}\ \frac{4}{7}}</math>.
 
There's a total of <math>\dbinom{8}{2} = 28</math> ways to choose a pair, so the probability is <math>\dfrac{4+12}{28} = \boxed{\textbf{(D)}\ \frac{4}{7}}</math>.
 +
 +
==See Also==
 +
{{AMC8 box|year=2007|num-b=20|num-a=22}}

Revision as of 22:44, 9 December 2012

Problem

Two cards are dealt from a deck of four red cards labeled $A$, $B$, $C$, $D$ and four green cards labeled $A$, $B$, $C$, $D$. A winning pair is two of the same color or two of the same letter. What is the probability of drawing a winning pair? $\textbf{(A)}\ \frac{2}{7}\qquad\textbf{(B)}\ \frac{3}{8}\qquad\textbf{(C)}\ \frac{1}{2}\qquad\textbf{(D)}\ \frac{4}{7}\qquad\textbf{(E)}\ \frac{5}{8}$

Solution

There are 4 ways of choosing a winning pair of the same number, and $2 \left( \dbinom{4}{2} \right) = 12$ ways to choose a pair of the same color.

There's a total of $\dbinom{8}{2} = 28$ ways to choose a pair, so the probability is $\dfrac{4+12}{28} = \boxed{\textbf{(D)}\ \frac{4}{7}}$.

See Also

2007 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions