Difference between revisions of "2013 AIME I Problems/Problem 10"

(Created page with "==Problem 10== There are nonzero integers <math>a</math>, <math>b</math>, <math>r</math>, and <math>s</math> such that the complex number <math>r+si</math> is a zero of the polyn...")
 
Line 1: Line 1:
 
==Problem 10==
 
==Problem 10==
 
There are nonzero integers <math>a</math>, <math>b</math>, <math>r</math>, and <math>s</math> such that the complex number <math>r+si</math> is a zero of the polynomial <math>P(x)={x}^{3}-a{x}^{2}+bx-65</math>. For each possible combination of <math>a</math> and <math>b</math>, let <math>{p}_{a,b}</math> be the sum of the zeros of <math>P(x)</math>. Find the sum of the <math>{p}_{a,b}</math>'s for all possible combinations of <math>a</math> and <math>b</math>.
 
There are nonzero integers <math>a</math>, <math>b</math>, <math>r</math>, and <math>s</math> such that the complex number <math>r+si</math> is a zero of the polynomial <math>P(x)={x}^{3}-a{x}^{2}+bx-65</math>. For each possible combination of <math>a</math> and <math>b</math>, let <math>{p}_{a,b}</math> be the sum of the zeros of <math>P(x)</math>. Find the sum of the <math>{p}_{a,b}</math>'s for all possible combinations of <math>a</math> and <math>b</math>.
 +
 +
 +
== Solution ==
 +
(solution)
 +
 +
== See also ==
 +
{{AIME box|year=2013|n=I|num-b=9|num-a=11}}

Revision as of 20:45, 16 March 2013

Problem 10

There are nonzero integers $a$, $b$, $r$, and $s$ such that the complex number $r+si$ is a zero of the polynomial $P(x)={x}^{3}-a{x}^{2}+bx-65$. For each possible combination of $a$ and $b$, let ${p}_{a,b}$ be the sum of the zeros of $P(x)$. Find the sum of the ${p}_{a,b}$'s for all possible combinations of $a$ and $b$.


Solution

(solution)

See also

2013 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions