Difference between revisions of "2013 AIME I Problems/Problem 9"
(→Solution 2) |
|||
Line 41: | Line 41: | ||
Proceed with the same labeling as in Solution 1. | Proceed with the same labeling as in Solution 1. | ||
<math>\angle B = \angle C = \angle A = \angle PDQ = 60^\circ</math> | <math>\angle B = \angle C = \angle A = \angle PDQ = 60^\circ</math> | ||
− | <math>\angle PDB + \angle PDQ + \angle QDC = \angle QDC + \angle | + | <math>\angle PDB + \angle PDQ + \angle QDC = \angle QDC + \angle CQD + \angle C = 180^\circ</math> |
Therefore, <math>\angle PDB = \angle DQC</math>. | Therefore, <math>\angle PDB = \angle DQC</math>. | ||
Similarly, <math>\angle BPD = \angle QDC</math>. | Similarly, <math>\angle BPD = \angle QDC</math>. | ||
Line 56: | Line 56: | ||
The solution is <math>39 + 39 + 35 = \boxed{113}</math>. | The solution is <math>39 + 39 + 35 = \boxed{113}</math>. | ||
− | |||
== See also == | == See also == | ||
{{AIME box|year=2013|n=I|num-b=8|num-a=10}} | {{AIME box|year=2013|n=I|num-b=8|num-a=10}} |
Revision as of 17:56, 29 March 2013
Contents
Problem 9
A paper equilateral triangle has side length 12. The paper triangle is folded so that vertex touches a point on side a distance 9 from point . The length of the line segment along which the triangle is folded can be written as , where , , and are positive integers, and are relatively prime, and is not divisible by the square of any prime. Find .
Solution 1
Let and be the points on and , respectively, where the paper is folded.
Let be the point on where the folded touches it.
Let , , and be the lengths , , and , respectively.
We have , , , , , and .
Using the Law of Cosines on :
Using the Law of Cosines on :
Using the Law of Cosines on :
The solution is .
Solution 2
Proceed with the same labeling as in Solution 1. Therefore, . Similarly, . Now, and are similar triangles. Solving this system of equations yields and . Using the Law of Cosines on :
The solution is .
See also
2013 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 8 |
Followed by Problem 10 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |