Difference between revisions of "2007 AMC 12A Problems/Problem 3"

(Solution)
(See also)
Line 17: Line 17:
  
 
[[Category:Introductory Algebra Problems]]
 
[[Category:Introductory Algebra Problems]]
 +
{{MAA Notice}}

Revision as of 20:30, 3 July 2013

Problem

The larger of two consecutive odd integers is three times the smaller. What is their sum?

$\displaystyle \mathrm{(A)}\ 4\qquad \mathrm{(B)}\ 8\qquad \mathrm{(C)}\ 12\qquad \mathrm{(D)}\ 16\qquad \mathrm{(E)}\ 20$

Solution

Solution 1 Let $n$ be the smaller term. Then $n+2=3n \Longrightarrow 2n = 2 \Longrightarrow n=1$

  • Thus, the answer is $1+(1+2)=4 \mathrm{(A)}$

Solution 2

  • By trial and error, 1 and 3 work. 1+3=4.

See also

2007 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png