Difference between revisions of "2009 AMC 12B Problems/Problem 22"
m (→See Also: yr) |
|||
Line 38: | Line 38: | ||
[[Category:Introductory Geometry Problems]] | [[Category:Introductory Geometry Problems]] | ||
+ | {{MAA Notice}} |
Revision as of 09:57, 4 July 2013
Problem
Parallelogram has area . Vertex is at and all other vertices are in the first quadrant. Vertices and are lattice points on the lines and for some integer , respectively. How many such parallelograms are there?
Solution
Solution 1
The area of any parallelogram can be computed as the size of the vector product of and .
In our setting where , , and this is simply .
In other words, we need to count the triples of integers where , and .
These can be counted as follows: We have identical red balls (representing powers of ), blue balls (representing powers of ), and three labeled urns (representing the factors , , and ). The red balls can be distributed in ways, and for each of these ways, the blue balls can then also be distributed in ways. (See Distinguishability for a more detailed explanation.)
Thus there are exactly ways how to break into three positive integer factors, and for each of them we get a single parallelogram. Hence the number of valid parallelograms is .
Solution 2
Without the vector product the area of can be computed for example as follows: If and , then clearly . Let , and be the orthogonal projections of , , and onto the axis. Let denote the area of the polygon . We can then compute:
See Also
2009 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 21 |
Followed by Problem 23 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.