Difference between revisions of "2011 AMC 12A Problems/Problem 23"

m (Solution)
m (Solution)
Line 16: Line 16:
 
<cmath>R=(b+1)(b^2+2a+1)</cmath>
 
<cmath>R=(b+1)(b^2+2a+1)</cmath>
 
<cmath>S=a(b+1)^2+(a+b^2)^2</cmath>
 
<cmath>S=a(b+1)^2+(a+b^2)^2</cmath>
In order for <math>h(z)=z</math>, we must have <math>R=0</math>, <math>Q=0</math>, and <math>P=S</math>. <math>R=0</math> implies <math>b=-1</math> or <math>b^2+2a+1=0</math>.
+
In order for <math>h(z)=z</math>, we must have <math>R=0</math>, <math>Q=0</math>, and <math>P=S</math>.  
 +
 
 +
<math>R=0</math> implies <math>b=-1</math> or <math>b^2+2a+1=0</math>.
 +
 
 
<math>Q=0</math> implies <math>a=0</math>, <math>b=-1</math>, or <math>b^2+2a+1=0</math>.
 
<math>Q=0</math> implies <math>a=0</math>, <math>b=-1</math>, or <math>b^2+2a+1=0</math>.
 +
 
<math>P=S</math> implies <math>b=\pm1</math> or <math>b^2+2a+1=0</math>.  
 
<math>P=S</math> implies <math>b=\pm1</math> or <math>b^2+2a+1=0</math>.  
 +
 
Since <math>|a|=1\neq 0</math>, in order to satisfy all 3 conditions we must have either <math>b=1</math> or <math>b^2+2a+1=0</math>. In the first case <math>|b|=1</math>.  
 
Since <math>|a|=1\neq 0</math>, in order to satisfy all 3 conditions we must have either <math>b=1</math> or <math>b^2+2a+1=0</math>. In the first case <math>|b|=1</math>.  
  

Revision as of 16:04, 22 September 2013

Problem

Let $f(z)= \frac{z+a}{z+b}$ and $g(z)=f(f(z))$, where $a$ and $b$ are complex numbers. Suppose that $\left| a \right| = 1$ and $g(g(z))=z$ for all $z$ for which $g(g(z))$ is defined. What is the difference between the largest and smallest possible values of $\left| b \right|$?

$\textbf{(A)}\ 0 \qquad \textbf{(B)}\ \sqrt{2}-1 \qquad \textbf{(C)}\ \sqrt{3}-1 \qquad \textbf{(D)}\ 1 \qquad \textbf{(E)}\ 2$

Solution

By algebraic manipulations, we obtain \[h(z)=g(g(z))=f(f(f(f(z))))=\frac{Pz+Q}{Rz+S}\] where \[P=(a+1)^2+a(b+1)^2\] \[Q=a(b+1)(b^2+2a+1)\] \[R=(b+1)(b^2+2a+1)\] \[S=a(b+1)^2+(a+b^2)^2\] In order for $h(z)=z$, we must have $R=0$, $Q=0$, and $P=S$.

$R=0$ implies $b=-1$ or $b^2+2a+1=0$.

$Q=0$ implies $a=0$, $b=-1$, or $b^2+2a+1=0$.

$P=S$ implies $b=\pm1$ or $b^2+2a+1=0$.

Since $|a|=1\neq 0$, in order to satisfy all 3 conditions we must have either $b=1$ or $b^2+2a+1=0$. In the first case $|b|=1$.

For the latter case note that \[|b^2+1|=|-2a|=2\] \[2=|b^2+1|\leq |b^2|+1\] and hence, \[1\leq|b|^2\Rightarrow1\leq |b|\]. On the other hand, \[2=|b^2+1|\geq|b^2|-1\] so, \[|b^2|\leq 3\Rightarrow0\leq |b|\leq \sqrt{3}\]. Thus $1\leq |b|\leq \sqrt{3}$. Hence the maximum value for $|b|$ is $\sqrt{3}$ while the minimum is $1$ (which can be achieved for instance when $|a|=1,|b|=\sqrt{3}$ or $|a|=1,|b|=1$ respectively). Therefore the answer is $\boxed{\textbf{(C)}\ 2\sqrt{6}}$.

See also

2011 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png