Difference between revisions of "2005 AMC 12A Problems/Problem 19"
Armalite46 (talk | contribs) m (→Solution 1) |
Armalite46 (talk | contribs) m (→Solution 1) |
||
Line 4: | Line 4: | ||
(\mathrm {A}) \ 1404 \qquad (\mathrm {B}) \ 1462 \qquad (\mathrm {C})\ 1604 \qquad (\mathrm {D}) \ 1605 \qquad (\mathrm {E})\ 1804 | (\mathrm {A}) \ 1404 \qquad (\mathrm {B}) \ 1462 \qquad (\mathrm {C})\ 1604 \qquad (\mathrm {D}) \ 1605 \qquad (\mathrm {E})\ 1804 | ||
</math> | </math> | ||
+ | |||
+ | ==Solutions== | ||
=== Solution 1=== | === Solution 1=== | ||
Line 9: | Line 11: | ||
<div style="text-align:center;"><math>2005-(200+200+201-20-20-20+2) = 1462 \Longrightarrow \mathrm{(B)}</math></div> | <div style="text-align:center;"><math>2005-(200+200+201-20-20-20+2) = 1462 \Longrightarrow \mathrm{(B)}</math></div> | ||
+ | |||
===Solution 2=== | ===Solution 2=== | ||
Alternatively, consider that counting without the number <math>4</math> is almost equivalent to counting in base <math>9</math>; only, in base <math>9</math>, the number <math>9</math> is not counted. Since <math>4</math> is skipped, the symbol <math>5</math> represents <math>4</math> miles of travel, and we have traveled <math>2004_9</math> miles. By basic conversion, <math>2005_9=9^3(2)+9^0(5)=729(2)+1(5)=1458+5=1463</math>. | Alternatively, consider that counting without the number <math>4</math> is almost equivalent to counting in base <math>9</math>; only, in base <math>9</math>, the number <math>9</math> is not counted. Since <math>4</math> is skipped, the symbol <math>5</math> represents <math>4</math> miles of travel, and we have traveled <math>2004_9</math> miles. By basic conversion, <math>2005_9=9^3(2)+9^0(5)=729(2)+1(5)=1458+5=1463</math>. |
Revision as of 21:41, 3 November 2013
Problem
A faulty car odometer proceeds from digit 3 to digit 5, always skipping the digit 4, regardless of position. If the odometer now reads 002005, how many miles has the car actually traveled?
Solutions
Solution 1
We find the number of numbers with a and subtract from . Quick counting tells us that there are numbers with a 4 in the hundreds place, numbers with a 4 in the tens place, and numbers with a 4 in the units place (counting ). Now we apply the Principle of Inclusion-Exclusion. There are numbers with a 4 in the hundreds and in the tens, and for both the other two intersections. The intersection of all three sets is just . So we get:
Solution 2
Alternatively, consider that counting without the number is almost equivalent to counting in base ; only, in base , the number is not counted. Since is skipped, the symbol represents miles of travel, and we have traveled miles. By basic conversion, .
See also
2005 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 18 |
Followed by Problem 20 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.