Difference between revisions of "2003 AMC 12B Problems/Problem 8"
Line 1: | Line 1: | ||
+ | {{duplicate|[[2003 AMC 12B Problems|2003 AMC 12B #8]] and [[2003 AMC 10B Problems|2003 AMC 10B #13]]}} | ||
+ | ==Problem== | ||
+ | |||
+ | Let <math>\clubsuit(x)</math> denote the sum of the digits of the positive integer <math>x</math>. For example, <math>\clubsuit(8)=8</math> and <math>\clubsuit(123)=1+2+3=6</math>. For how many two-digit values of <math>x</math> is <math>\clubsuit(\clubsuit(x))=3</math>? | ||
+ | |||
+ | <math>\textbf{(A) } 3 \qquad\textbf{(B) } 4 \qquad\textbf{(C) } 6 \qquad\textbf{(D) } 9 \qquad\textbf{(E) } 10 </math> | ||
+ | |||
+ | ==Solution== | ||
Let <math>a</math> and <math>b</math> be the digits of <math>x</math>, | Let <math>a</math> and <math>b</math> be the digits of <math>x</math>, | ||
Line 5: | Line 13: | ||
Clearly <math>\clubsuit(x)</math> can only be <math>3, 12, 21,</math> or <math>30</math> and only <math>3</math> and <math>12</math> are possible to have two digits sum to. | Clearly <math>\clubsuit(x)</math> can only be <math>3, 12, 21,</math> or <math>30</math> and only <math>3</math> and <math>12</math> are possible to have two digits sum to. | ||
− | If <math>\clubsuit(x)</math> sums to <math>3</math>, there are 3 different solutions : <math>12, 21, or 30</math> | + | If <math>\clubsuit(x)</math> sums to <math>3</math>, there are 3 different solutions : <math>12, 21, \text{or } 30</math> |
− | If <math>\clubsuit(x)</math> sums to <math>12</math>, there are 7 different solutions: <math>39, 48, 57, 66,75, 84, or 93</math> | + | If <math>\clubsuit(x)</math> sums to <math>12</math>, there are 7 different solutions: <math>39, 48, 57, 66,75, 84, \text{or } 93</math> |
+ | The total number of solutions is <math> 3 + 7 =10 \Rightarrow \text (E)</math> | ||
− | + | ==See Also== | |
+ | {{AMC12 box|year=2003|ab=B|num-b=7|num-a=9}} | ||
+ | {{AMC10 box|year=2003|ab=B|num-b=12|num-a=14}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 23:34, 4 January 2014
- The following problem is from both the 2003 AMC 12B #8 and 2003 AMC 10B #13, so both problems redirect to this page.
Problem
Let denote the sum of the digits of the positive integer . For example, and . For how many two-digit values of is ?
Solution
Let and be the digits of ,
Clearly can only be or and only and are possible to have two digits sum to.
If sums to , there are 3 different solutions :
If sums to , there are 7 different solutions:
The total number of solutions is
See Also
2003 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 7 |
Followed by Problem 9 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
2003 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.