Difference between revisions of "1992 AHSME Problems/Problem 21"
m |
m |
||
Line 1: | Line 1: | ||
+ | == Problem == | ||
+ | |||
For a finite sequence <math>A=(a_1,a_2,...,a_n)</math> of numbers, the ''Cesáro sum'' of A is defined to be | For a finite sequence <math>A=(a_1,a_2,...,a_n)</math> of numbers, the ''Cesáro sum'' of A is defined to be | ||
− | |||
<math>\frac{S_1+\cdots+S_n}{n}</math> , where <math>S_k=a_1+\cdots+a_k</math> and <math>1\leq k\leq n</math>. If the Cesáro sum of | <math>\frac{S_1+\cdots+S_n}{n}</math> , where <math>S_k=a_1+\cdots+a_k</math> and <math>1\leq k\leq n</math>. If the Cesáro sum of | ||
− | |||
the 99-term sequence <math>(a_1,...,a_{99})</math> is 1000, what is the Cesáro sum of the 100-term sequence | the 99-term sequence <math>(a_1,...,a_{99})</math> is 1000, what is the Cesáro sum of the 100-term sequence | ||
+ | <math>(1,a_1,...,a_{99})</math>? | ||
− | <math>( | + | <math>\text{(A) } 991\quad |
+ | \text{(B) } 999\quad | ||
+ | \text{(C) } 1000\quad | ||
+ | \text{(D) } 1001\quad | ||
+ | \text{(E) } 1009</math> | ||
== Solution == | == Solution == |
Revision as of 22:22, 27 September 2014
Problem
For a finite sequence of numbers, the Cesáro sum of A is defined to be , where and . If the Cesáro sum of the 99-term sequence is 1000, what is the Cesáro sum of the 100-term sequence ?
Solution
See also
1992 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 20 |
Followed by Problem 22 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.