Difference between revisions of "2001 AMC 10 Problems/Problem 20"
(→Problem) |
|||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | A regular octagon is formed by cutting an isosceles right triangle from each of the corners of a square with sides of length <math> 2000 </math>. What is the length of each side of the octagon? | + | <!-- don't remove the following tag, for PoTW on the Wiki front page--><onlyinclude>A regular octagon is formed by cutting an isosceles right triangle from each of the corners of a square with sides of length <math> 2000 </math>. What is the length of each side of the octagon?<!-- don't remove the following tag, for PoTW on the Wiki front page--></onlyinclude> |
<math> \textbf{(A)} \frac{1}{3}(2000) \qquad \textbf{(B)} {2000(\sqrt{2}-1)} \qquad \textbf{(C)} {2000(2-\sqrt{2})} | <math> \textbf{(A)} \frac{1}{3}(2000) \qquad \textbf{(B)} {2000(\sqrt{2}-1)} \qquad \textbf{(C)} {2000(2-\sqrt{2})} |
Revision as of 17:51, 27 March 2015
Problem
A regular octagon is formed by cutting an isosceles right triangle from each of the corners of a square with sides of length . What is the length of each side of the octagon?
Solution
.
See Also
2001 AMC 10 (Problems • Answer Key • Resources) | ||
Preceded by Problem 19 |
Followed by Problem 21 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.