Difference between revisions of "2015 AIME II Problems/Problem 7"
(→Solution 2) |
(→Solution 2) |
||
Line 46: | Line 46: | ||
draw(S--P); | draw(S--P); | ||
draw(A--E,dashed); | draw(A--E,dashed); | ||
+ | label($A$,A,NE); | ||
</asy> | </asy> | ||
Revision as of 09:38, 30 March 2015
Problem
Triangle has side lengths , , and . Rectangle has vertex on , vertex on , and vertices and on . In terms of the side length , the area of can be expressed as the quadratic polynomial
Area() = .
Then the coefficient , where and are relatively prime positive integers. Find .
Solution 1
If , the area of rectangle is , so
and . If , we can reflect over PQ, over , and over to completely cover rectangle , so the area of is half the area of the triangle. Using Heron's formula, since ,
so
and
so the answer is .
Solution 2
unitsize(20); pair A,B,C,E,F,P,Q,R,S; A=(48/5,36/5); B=(0,0); C=(25,0); E=(48/5,0); F=(48/5,18/5); P=(24/5,18/5); Q=(173/10,18/5); S=(24/5,0); R=(173/10,0); draw(A--B--C--cycle); draw(P--Q); draw(Q--R); draw(R--S); draw(S--P); draw(A--E,dashed); label($A$,A,NE); (Error making remote request. Unknown error_msg)
Similar triangles can also solve the problem.
First, solve for the area of the triangle. . This can be done by Heron's Formula or placing an right triangle on and solving. (The side would be collinear with line )
After finding the area, solve for the altitude to . Let be the intersection of the altitude from and side . Then . Solving for using the Pythagorean Formula, we get . We then know that .
Now consider the rectangle . Since is collinear with and parallel to , is parallel to meaning is similar to .
Let be the intersection between and . By the similar triangles, we know that . Since . We can solve for and in terms of . We get that and .
Let's work with . We know that is parallel to so is similar to . We can set up the proportion:
. Solving for , .
We can solve for then since we know that and .
Therefore, .
This means that .
- solution by abvenkgoo
Solution 3
Heron's Formula gives so the altitude from to has length
Now, draw a parallel to from , intersecting at . Then in parallelogram , and so . Clearly, and are similar triangles, and so their altitudes have lengths proportional to their corresponding base sides, and so Solving gives , so the answer is .
- solution by suli
See also
2015 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.