Difference between revisions of "2002 AMC 12B Problems/Problem 9"

m (Solution 3)
Line 25: Line 25:
 
<cmath>\frac{a + n}{a} = \frac{a + 3n}{a + n}.</cmath>
 
<cmath>\frac{a + n}{a} = \frac{a + 3n}{a + n}.</cmath>
 
Cross-multiplying, we get  
 
Cross-multiplying, we get  
<cmath>a^2 + 2an + n^2 &= a^2 + 3an</cmath>
+
<cmath>a^2 + 2an + n^2 = a^2 + 3an</cmath>
 
<cmath>n^2 = an</cmath>
 
<cmath>n^2 = an</cmath>
 
<cmath>n = a</cmath>
 
<cmath>n = a</cmath>

Revision as of 15:40, 22 December 2015

Problem

If $a,b,c,d$ are positive real numbers such that $a,b,c,d$ form an increasing arithmetic sequence and $a,b,d$ form a geometric sequence, then $\frac ad$ is

$\mathrm{(A)}\ \frac 1{12} \qquad\mathrm{(B)}\ \frac 16 \qquad\mathrm{(C)}\ \frac 14 \qquad\mathrm{(D)}\ \frac 13 \qquad\mathrm{(E)}\ \frac 12$

Solution

Solution 1

We can let a=1, b=2, c=3, and d=4. $\frac{a}{d}=\boxed{\frac{1}{4}}  \Longrightarrow \mathrm{(C)}$

Solution 2

As $a, b, d$ is a geometric sequence, let $b=ka$ and $d=k^2a$ for some $k>0$.

Now, $a, b, c, d$ is an arithmetic sequence. Its difference is $b-a=(k-1)a$. Thus $d=a + 3(k-1)a = (3k-2)a$.

Comparing the two expressions for $d$ we get $k^2=3k-2$. The positive solution is $k=2$, and $\frac{a}{d}=\frac{a}{k^2a}=\frac{1}{k^2}=\boxed{\frac{1}{4}} \Longrightarrow \mathrm{(C)}$.

Solution 3

Letting $n$ be the common difference of the arithmetic progression, we have $b = a + n$, $c = a + 2n$, $d = a + 3n$. We are given that $b / a$ = $d / b$, or \[\frac{a + n}{a} = \frac{a + 3n}{a + n}.\] Cross-multiplying, we get \[a^2 + 2an + n^2 = a^2 + 3an\] \[n^2 = an\] \[n = a\] So $\frac{a}{d} = \frac{a}{a + 3n} = \frac{a}{4a} = \boxed{\frac{1}{4}}  \Longrightarrow \mathrm{(C)}$.

See also

2002 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png