Difference between revisions of "2003 AMC 10B Problems/Problem 20"
(→Solution) |
(→Problem) |
||
Line 3: | Line 3: | ||
==Problem== | ==Problem== | ||
In rectangle <math>ABCD, AB=5</math> and <math>BC=3</math>. Points <math>F</math> and <math>G</math> are on <math>\overline{CD}</math> so that <math>DF=1</math> and <math>GC=2</math>. Lines <math>AF</math> and <math>BG</math> intersect at <math>E</math>. Find the area of <math>\triangle AEB</math>. | In rectangle <math>ABCD, AB=5</math> and <math>BC=3</math>. Points <math>F</math> and <math>G</math> are on <math>\overline{CD}</math> so that <math>DF=1</math> and <math>GC=2</math>. Lines <math>AF</math> and <math>BG</math> intersect at <math>E</math>. Find the area of <math>\triangle AEB</math>. | ||
+ | <center><asy> | ||
+ | unitsize(8mm); | ||
+ | defaultpen(linewidth(.8pt)+fontsize(10pt)); | ||
+ | dotfactor=4; | ||
+ | pair A=(0,0), B=(5,0), C=(5,3), D=(0,3); | ||
+ | pair F=(1,3), G=(3,3); | ||
+ | pair E=(5/3,5); | ||
+ | |||
+ | draw(A--B--C--D--cycle); | ||
+ | draw(A--E); | ||
+ | draw(B--E); | ||
+ | |||
+ | pair[] ps={A,B,C,D,E,F,G}; dot(ps); | ||
+ | label("$A$",A,SW); | ||
+ | label("$B$",B,SE); | ||
+ | label("$C$",C,NE); | ||
+ | label("$D$",D,NW); | ||
+ | label("$E$",E,N); | ||
+ | label("$F$",F,SE); | ||
+ | label("$G$",G,SW); | ||
+ | label("$1$",midpoint(D--F),N); | ||
+ | label("$2$",midpoint(G--C),N); | ||
+ | label("$5$",midpoint(A--B),S); | ||
+ | label("$3$",midpoint(A--D),W); | ||
+ | </asy></center> | ||
<math>\textbf{(A) } 10 \qquad\textbf{(B) } \frac{21}{2} \qquad\textbf{(C) } 12 \qquad\textbf{(D) } \frac{25}{2} \qquad\textbf{(E) } 15</math> | <math>\textbf{(A) } 10 \qquad\textbf{(B) } \frac{21}{2} \qquad\textbf{(C) } 12 \qquad\textbf{(D) } \frac{25}{2} \qquad\textbf{(E) } 15</math> | ||
Revision as of 12:03, 3 January 2016
- The following problem is from both the 2003 AMC 12B #14 and 2003 AMC 10B #20, so both problems redirect to this page.
Problem
In rectangle and . Points and are on so that and . Lines and intersect at . Find the area of .
Solution
because The ratio of to is since and from subtraction. If we let be the height of
The height is so the area of is .
See Also
2003 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 13 |
Followed by Problem 15 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
2003 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 19 |
Followed by Problem 21 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.