Difference between revisions of "2016 AMC 12B Problems/Problem 17"
(Created page with "==Problem== In <math>\triangle ABC</math> shown in the figure, <math>AB=7</math>, <math>BC=8</math>, <math>CA=9</math>, and <math>\overline{AH}</math> is an altitude. Points ...") |
|||
Line 3: | Line 3: | ||
In <math>\triangle ABC</math> shown in the figure, <math>AB=7</math>, <math>BC=8</math>, <math>CA=9</math>, and <math>\overline{AH}</math> is an altitude. Points <math>D</math> and <math>E</math> lie on sides <math>\overline{AC}</math> and <math>\overline{AB}</math>, respectively, so that <math>\overline{BD}</math> and <math>\overline{CE}</math> are angle bisectors, intersecting <math>\overline{AH}</math> at <math>Q</math> and <math>P</math>, respectively. What is <math>PQ</math>? | In <math>\triangle ABC</math> shown in the figure, <math>AB=7</math>, <math>BC=8</math>, <math>CA=9</math>, and <math>\overline{AH}</math> is an altitude. Points <math>D</math> and <math>E</math> lie on sides <math>\overline{AC}</math> and <math>\overline{AB}</math>, respectively, so that <math>\overline{BD}</math> and <math>\overline{CE}</math> are angle bisectors, intersecting <math>\overline{AH}</math> at <math>Q</math> and <math>P</math>, respectively. What is <math>PQ</math>? | ||
− | + | <asy> | |
import graph; size(9cm); | import graph; size(9cm); | ||
real labelscalefactor = 0.5; /* changes label-to-point distance */ | real labelscalefactor = 0.5; /* changes label-to-point distance */ | ||
Line 24: | Line 24: | ||
/* dots and labels */ | /* dots and labels */ | ||
dot((0.,0.),dotstyle); | dot((0.,0.),dotstyle); | ||
− | label(" | + | label("$A$", (-0.2432592696221352,-0.5715638692509372), NE * labelscalefactor); |
dot((7.,0.),dotstyle); | dot((7.,0.),dotstyle); | ||
− | label(" | + | label("$B$", (7.0458397156813835,-0.48935598595804014), NE * labelscalefactor); |
dot((3.7058823529411766,0.),dotstyle); | dot((3.7058823529411766,0.),dotstyle); | ||
− | label(" | + | label("$E$", (3.8123296394941084,0.16830708038513573), NE * labelscalefactor); |
dot((4.714285714285714,7.666518779999279),dotstyle); | dot((4.714285714285714,7.666518779999279),dotstyle); | ||
− | label(" | + | label("$C$", (4.579603216894479,7.895848109917452), NE * labelscalefactor); |
dot((2.2,3.5777087639996634),linewidth(3.pt) + dotstyle); | dot((2.2,3.5777087639996634),linewidth(3.pt) + dotstyle); | ||
− | label(" | + | label("$D$", (2.1407693458718726,3.127790878929427), NE * labelscalefactor); |
dot((6.428571428571427,1.9166296949998194),linewidth(3.pt) + dotstyle); | dot((6.428571428571427,1.9166296949998194),linewidth(3.pt) + dotstyle); | ||
− | label(" | + | label("$H$", (6.004539860638023,1.9494778850645704), NE * labelscalefactor); |
dot((5.,1.49071198499986),linewidth(3.pt) + dotstyle); | dot((5.,1.49071198499986),linewidth(3.pt) + dotstyle); | ||
− | label(" | + | label("$Q$", (4.935837377830365,1.7302568629501784), NE * labelscalefactor); |
dot((3.857142857142857,1.1499778169998918),linewidth(3.pt) + dotstyle); | dot((3.857142857142857,1.1499778169998918),linewidth(3.pt) + dotstyle); | ||
− | label(" | + | label("$P$", (3.538303361851119,1.2370095631927964), NE * labelscalefactor); |
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); | clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); | ||
/* end of picture */ | /* end of picture */ | ||
− | + | </asy> | |
<math>\textbf{(A)}\ 1 \qquad | <math>\textbf{(A)}\ 1 \qquad |
Revision as of 11:13, 21 February 2016
Problem
In shown in the figure, , , , and is an altitude. Points and lie on sides and , respectively, so that and are angle bisectors, intersecting at and , respectively. What is ?
Solution
See Also
2016 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 16 |
Followed by Problem 18 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.