Difference between revisions of "2016 AMC 10B Problems/Problem 9"
Wholeworld (talk | contribs) (→Solution) |
(→Solution) |
||
Line 6: | Line 6: | ||
==Solution== | ==Solution== | ||
− | + | <asy>import graph;size(7cm,IgnoreAspect); | |
− | + | real f(real x) {return x*x;} | |
− | + | draw((0,0)--(4,16)--(-4,16)--cycle,blue); | |
− | + | draw(graph(f,-5,5,operator ..),gray); | |
+ | xaxis("$x$");yaxis("$y$",-1); | ||
+ | label("$y=x^2$",(4.5,20.25),E); | ||
+ | draw((4.2,0)--(4.2,16),Arrows); | ||
+ | label("$r^2$",(4.2,0)--(4.2,16),E); | ||
+ | draw((0,17)--(4,17),Arrows); | ||
+ | label("$r$",(0,17)--(4,17),N); | ||
+ | </asy> | ||
+ | The area of the triangle is <math>r^3</math>, so <math>r^3=64\implies r=4</math>, giving a total distance across the top of <math>8</math>, which is answer <math>\textbf{(C)}</math>. | ||
==See Also== | ==See Also== | ||
{{AMC10 box|year=2016|ab=B|num-b=8|num-a=10}} | {{AMC10 box|year=2016|ab=B|num-b=8|num-a=10}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 13:05, 21 February 2016
Problem
All three vertices of lie on the parabola defined by , with at the origin and parallel to the -axis. The area of the triangle is . What is the length of ?
Solution
The area of the triangle is , so , giving a total distance across the top of , which is answer .
See Also
2016 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 8 |
Followed by Problem 10 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.