Difference between revisions of "1996 AIME Problems/Problem 11"
(→Solution 3) |
(→Solution 1) |
||
Line 9: | Line 9: | ||
\end{eqnarray*}</cmath> | \end{eqnarray*}</cmath> | ||
− | Thus <math>z^5 = 1, z \neq 1 \Longrightarrow z = \mathrm{cis}\ 72, 144, 216, 288</math>, | + | Thus <math>z^5 = 1, z \neq 1 \Longrightarrow z = \mathrm{cis}\ 72 ^\circ, 144 ^\circ, 216 ^\circ, 288 ^\circ</math>, |
− | or <math>z^2 - z + 1 = 0 \Longrightarrow z = \frac{1 \pm \sqrt{-3}}{2} = \mathrm{cis}\ 60, | + | or <math>z^2 - z + 1 = 0 \Longrightarrow z = \frac{1 \pm \sqrt{-3}}{2} = \mathrm{cis}\ 60 ^\circ, 30^\circ</math> |
(see [[cis]]). | (see [[cis]]). |
Revision as of 19:19, 16 August 2016
Problem
Let be the product of the roots of that have a positive imaginary part, and suppose that , where and . Find .
Solution 1
Thus ,
or
(see cis).
Discarding the roots with negative imaginary parts (leaving us with ), we are left with ; their product is .
Solution 2
Let the fifth roots of unity, except for . Then , and since both sides have the fifth roots of unity as roots, we have . Long division quickly gives the other factor to be . The solution follows as above.
Solution 3
Divide through by . We get the equation . Let . Then . Our equation is then , with solutions . For , we get . For , we get (using exponential form of ). For , we get . The ones with positive imaginary parts are ones where , so we have .
See also
1996 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 10 |
Followed by Problem 12 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.