Difference between revisions of "1980 AHSME Problems/Problem 13"

(Created page with "== Problem == A bug (of negligible size) starts at the origin on the coordinate plane. First, it moves one unit right to <math>(1,0)</math>. Then it makes a <math>90^\circ</math...")
 
(Solution)
Line 7: Line 7:
  
 
== Solution ==
 
== Solution ==
<math>\fbox{}</math>
+
Writing out the change in <math>x</math> coordinates and then in <math>y</math> coordinates gives the infinite sum <math>1-\frac{1}{4}+\frac{1}{16}-\dots</math> and <math>\frac{1}{2}-\frac{1}{8}+\dots</math> respectively. Using the infinite geometric sum formula, we have <math>\frac{1}{1+\frac{1}{4}}=\frac{4}{5}</math> and <math>\frac{\frac{1}{2}}{1+\frac{1}{4}}=\frac{2}{5}</math>, thus the answer is <math>\left( \frac{4}{5}, \frac{2}{5} \right)</math>
  
 
== See also ==
 
== See also ==

Revision as of 17:15, 2 January 2017

Problem

A bug (of negligible size) starts at the origin on the coordinate plane. First, it moves one unit right to $(1,0)$. Then it makes a $90^\circ$ counterclockwise and travels $\frac 12$ a unit to $\left(1, \frac 12 \right)$. If it continues in this fashion, each time making a $90^\circ$ degree turn counterclockwise and traveling half as far as the previous move, to which of the following points will it come closest?

$\text{(A)} \ \left(\frac 23, \frac 23 \right) \qquad \text{(B)} \ \left( \frac 45, \frac 25 \right) \qquad \text{(C)} \ \left( \frac 23, \frac 45 \right) \qquad \text{(D)} \ \left(\frac 23, \frac 13 \right) \qquad \text{(E)} \ \left(\frac 25, \frac 45 \right)$


Solution

Writing out the change in $x$ coordinates and then in $y$ coordinates gives the infinite sum $1-\frac{1}{4}+\frac{1}{16}-\dots$ and $\frac{1}{2}-\frac{1}{8}+\dots$ respectively. Using the infinite geometric sum formula, we have $\frac{1}{1+\frac{1}{4}}=\frac{4}{5}$ and $\frac{\frac{1}{2}}{1+\frac{1}{4}}=\frac{2}{5}$, thus the answer is $\left( \frac{4}{5}, \frac{2}{5} \right)$

See also

1980 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png