Difference between revisions of "2016 AMC 10B Problems/Problem 19"
Fieryentei (talk | contribs) (→Solution 2 (Coordinate Geometry)) |
Ilovemath04 (talk | contribs) m (→Solution 2 (Coordinate Geometry)) |
||
Line 73: | Line 73: | ||
dot(C1); dot(C2); | dot(C1); dot(C2); | ||
dot((0,0)); dot((5,4));</asy> | dot((0,0)); dot((5,4));</asy> | ||
− | Finding the intersections of <math>AC</math> and <math>EF</math>, and <math>AG</math> and <math>EF</math> gives the x-coordinates of <math>P</math> and <math>Q</math> to be <math>\frac{20}{7}</math> and <math>\frac{40}{13}</math>. This means that <math>P'Q' = DQ' - DP' = \frac{ | + | Finding the intersections of <math>AC</math> and <math>EF</math>, and <math>AG</math> and <math>EF</math> gives the x-coordinates of <math>P</math> and <math>Q</math> to be <math>\frac{20}{7}</math> and <math>\frac{40}{13}</math>. This means that <math>P'Q' = DQ' - DP' = \frac{40}{13} - \frac{20}{7} = \frac{20}{91}</math>. Now we can find <math>\frac{PQ}{EF} = \frac{P'Q'}{E'F} = \frac{\frac{20}{91}}{2} = \boxed{\textbf{(D)}~\frac{10}{91}}</math> |
==Solution 3 (Similar Triangles)== | ==Solution 3 (Similar Triangles)== |
Revision as of 14:14, 15 January 2018
Contents
Problem
Rectangle has and . Point lies on so that , point lies on so that . and point lies on so that . Segments and intersect at and , respectively. What is the value of ?
Solution 1 (Answer Choices)
Since the opposite sides of a rectangle are parallel and due to vertical angles, . Furthermore, the ratio between the side lengths of the two triangles is . Labeling and , we see that turns out to be equal to . Since the denominator of must now be a multiple of 7, the only possible solution in the answer choices is .
Solution 2 (Coordinate Geometry)
First, we will define point as the origin. Then, we will find the equations of the following three lines: , , and . The slopes of these lines are , , and , respectively. Next, we will find the equations of , , and . They are as follows: After drawing in altitudes to from , , and , we see that because of similar triangles, and so we only need to find the x-coordinates of and . Finding the intersections of and , and and gives the x-coordinates of and to be and . This means that . Now we can find
Solution 3 (Similar Triangles)
Extend to intersect at . Letting , we have that
Then, notice that and . Thus, we see that and Thus, we see that
See Also
2016 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 18 |
Followed by Problem 20 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.