Difference between revisions of "2018 AMC 10B Problems/Problem 13"

(Solution)
Line 13: Line 13:
 
Note that <math>10^{2k}+1</math> for some odd <math>k</math> will suffice <math>\mod {101}</math>. Each <math>2k \in \{2,4,6,\dots,2018\}</math>, so the answer is <math>\boxed{\textbf{(C) } 505}</math>
 
Note that <math>10^{2k}+1</math> for some odd <math>k</math> will suffice <math>\mod {101}</math>. Each <math>2k \in \{2,4,6,\dots,2018\}</math>, so the answer is <math>\boxed{\textbf{(C) } 505}</math>
 
(AOPS12142015)
 
(AOPS12142015)
 +
 +
==See Also==
 +
 +
{{AMC10 box|year=2018|ab=B|num-b=12|num-a=14}}
 +
{{MAA Notice}}

Revision as of 14:05, 16 February 2018

Problem

How many of the first $2018$ numbers in the sequence $101, 1001, 10001, 100001, \dots$ are divisible by $101$?

$\textbf{(A) }253 \qquad \textbf{(B) }504 \qquad \textbf{(C) }505 \qquad \textbf{(D) }506  \qquad \textbf{(E) }1009 \qquad$

Solution

Note that $10^{2k}+1$ for some odd $k$ will suffice $\mod {101}$. Each $2k \in \{2,4,6,\dots,2018\}$, so the answer is $\boxed{\textbf{(C) } 505}$ (AOPS12142015)

See Also

2018 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png