Difference between revisions of "2018 AMC 10B Problems/Problem 14"
MathMaestro9 (talk | contribs) (Added Solution) |
|||
Line 5: | Line 5: | ||
== Solution == | == Solution == | ||
− | To minimize the number of values, we want to maximize the number of times they appear. So, we could have 223 numbers appear 9 times, 1 number appear once, and the mode appear 10 times, giving us a total of <math>223 + 1 + 1</math> = <math>\boxed{(D) 225}</math> | + | To minimize the number of values, we want to maximize the number of times they appear. So, we could have 223 numbers appear 9 times, 1 number appear once, and the mode appear 10 times, giving us a total of <math>223 + 1 + 1</math> = <math>\boxed{\textbf{(D) } 225}</math> |
==See Also== | ==See Also== |
Revision as of 15:37, 16 February 2018
A list of positive integers has a unique mode, which occurs exactly times. What is the least number of distinct values that can occur in the list?
Solution
To minimize the number of values, we want to maximize the number of times they appear. So, we could have 223 numbers appear 9 times, 1 number appear once, and the mode appear 10 times, giving us a total of =
See Also
2018 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.