Difference between revisions of "2018 AMC 10B Problems/Problem 20"

(Solution 2)
Line 5: Line 5:
 
<math>\textbf{(A)} \text{ 2016} \qquad \textbf{(B)} \text{ 2017} \qquad \textbf{(C)} \text{ 2018} \qquad \textbf{(D)} \text{ 2019} \qquad \textbf{(E)} \text{ 2020}</math>
 
<math>\textbf{(A)} \text{ 2016} \qquad \textbf{(B)} \text{ 2017} \qquad \textbf{(C)} \text{ 2018} \qquad \textbf{(D)} \text{ 2019} \qquad \textbf{(E)} \text{ 2020}</math>
  
==Solution==
+
==Solution 1==
 
<math>f\left(n\right) = f\left(n - 1\right) - f\left(n - 2\right) + n</math>
 
<math>f\left(n\right) = f\left(n - 1\right) - f\left(n - 2\right) + n</math>
  
Line 18: Line 18:
 
Thus, <math>f\left(2018\right) = 2016 + f\left(2\right) = 2017</math>. <math>\boxed{B}</math>
 
Thus, <math>f\left(2018\right) = 2016 + f\left(2\right) = 2017</math>. <math>\boxed{B}</math>
  
 +
==Solution 2==
 +
Start out by listing some terms of the sequence.
 +
<cmath>f(1)=1</cmath>
 +
<cmath>f(2)=1</cmath>
 +
 +
<cmath>f(3)=3</cmath>
 +
<cmath>f(4)=6</cmath>
 +
<cmath>f(5)=8</cmath>
 +
<cmath>f(6)=8</cmath>
 +
<cmath>f(7)=7</cmath>
 +
<cmath>f(8)=7</cmath>
 +
 +
<cmath>f(9)=9</cmath>
 +
<cmath>f(10)=12</cmath>
 +
<cmath>f(11)=14</cmath>
 +
<cmath>f(12)=14</cmath>
 +
<cmath>f(13)=13</cmath>
 +
<cmath>f(14)=13</cmath>
 +
 +
f(15)=15
 +
.....
 +
Notice how it repeats every 6 times where f(n)=n The number will always be an odd multiple of 3. The pattern of the numbers that follow will always be +3, +2, +0, -1, +0
 +
The closest one to 2018 is 2013 so
 +
<cmath>f(2013)=2013</cmath>
 +
<cmath>f(2014)=2016</cmath>
 +
<cmath>f(2015)=2018</cmath>
 +
<cmath>f(2016)=2018</cmath>
 +
<cmath>f(2017)=2017</cmath>
 +
<math></math>f(2018)=<math>\boxed{2017}</math><math></math>
 
==See Also==
 
==See Also==
 
{{AMC10 box|year=2018|ab=B|num-b=19|num-a=21}}
 
{{AMC10 box|year=2018|ab=B|num-b=19|num-a=21}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 18:37, 16 February 2018

Problem

A function $f$ is defined recursively by $f(1)=f(2)=1$ and \[f(n)=f(n-1)-f(n-2)+n\]for all integers $n \geq 3$. What is $f(2018)$?

$\textbf{(A)} \text{ 2016} \qquad \textbf{(B)} \text{ 2017} \qquad \textbf{(C)} \text{ 2018} \qquad \textbf{(D)} \text{ 2019} \qquad \textbf{(E)} \text{ 2020}$

Solution 1

$f\left(n\right) = f\left(n - 1\right) - f\left(n - 2\right) + n$

$= \left(f\left(n - 2\right) - f\left(n - 3\right) + n - 1\right) - f\left(n - 2\right) + n$

$= 2n - 1 - f\left(n - 3\right)$

$= 2n - 1 - \left(2\left(n - 3\right) - 1 - f\left(n - 6\right)\right)$

$= f\left(n - 6\right) + 6$

Thus, $f\left(2018\right) = 2016 + f\left(2\right) = 2017$. $\boxed{B}$

Solution 2

Start out by listing some terms of the sequence. \[f(1)=1\] \[f(2)=1\]

\[f(3)=3\] \[f(4)=6\] \[f(5)=8\] \[f(6)=8\] \[f(7)=7\] \[f(8)=7\]

\[f(9)=9\] \[f(10)=12\] \[f(11)=14\] \[f(12)=14\] \[f(13)=13\] \[f(14)=13\]

f(15)=15 ..... Notice how it repeats every 6 times where f(n)=n The number will always be an odd multiple of 3. The pattern of the numbers that follow will always be +3, +2, +0, -1, +0 The closest one to 2018 is 2013 so \[f(2013)=2013\] \[f(2014)=2016\] \[f(2015)=2018\] \[f(2016)=2018\] \[f(2017)=2017\] $$ (Error compiling LaTeX. Unknown error_msg)f(2018)=$\boxed{2017}$$$ (Error compiling LaTeX. Unknown error_msg)

See Also

2018 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png