Difference between revisions of "2018 AMC 10B Problems/Problem 20"
(→Solution 2) |
|||
Line 5: | Line 5: | ||
<math>\textbf{(A)} \text{ 2016} \qquad \textbf{(B)} \text{ 2017} \qquad \textbf{(C)} \text{ 2018} \qquad \textbf{(D)} \text{ 2019} \qquad \textbf{(E)} \text{ 2020}</math> | <math>\textbf{(A)} \text{ 2016} \qquad \textbf{(B)} \text{ 2017} \qquad \textbf{(C)} \text{ 2018} \qquad \textbf{(D)} \text{ 2019} \qquad \textbf{(E)} \text{ 2020}</math> | ||
− | ==Solution== | + | ==Solution 1== |
<math>f\left(n\right) = f\left(n - 1\right) - f\left(n - 2\right) + n</math> | <math>f\left(n\right) = f\left(n - 1\right) - f\left(n - 2\right) + n</math> | ||
Line 18: | Line 18: | ||
Thus, <math>f\left(2018\right) = 2016 + f\left(2\right) = 2017</math>. <math>\boxed{B}</math> | Thus, <math>f\left(2018\right) = 2016 + f\left(2\right) = 2017</math>. <math>\boxed{B}</math> | ||
+ | ==Solution 2== | ||
+ | Start out by listing some terms of the sequence. | ||
+ | <cmath>f(1)=1</cmath> | ||
+ | <cmath>f(2)=1</cmath> | ||
+ | |||
+ | <cmath>f(3)=3</cmath> | ||
+ | <cmath>f(4)=6</cmath> | ||
+ | <cmath>f(5)=8</cmath> | ||
+ | <cmath>f(6)=8</cmath> | ||
+ | <cmath>f(7)=7</cmath> | ||
+ | <cmath>f(8)=7</cmath> | ||
+ | |||
+ | <cmath>f(9)=9</cmath> | ||
+ | <cmath>f(10)=12</cmath> | ||
+ | <cmath>f(11)=14</cmath> | ||
+ | <cmath>f(12)=14</cmath> | ||
+ | <cmath>f(13)=13</cmath> | ||
+ | <cmath>f(14)=13</cmath> | ||
+ | |||
+ | f(15)=15 | ||
+ | ..... | ||
+ | Notice how it repeats every 6 times where f(n)=n The number will always be an odd multiple of 3. The pattern of the numbers that follow will always be +3, +2, +0, -1, +0 | ||
+ | The closest one to 2018 is 2013 so | ||
+ | <cmath>f(2013)=2013</cmath> | ||
+ | <cmath>f(2014)=2016</cmath> | ||
+ | <cmath>f(2015)=2018</cmath> | ||
+ | <cmath>f(2016)=2018</cmath> | ||
+ | <cmath>f(2017)=2017</cmath> | ||
+ | <math></math>f(2018)=<math>\boxed{2017}</math><math></math> | ||
==See Also== | ==See Also== | ||
{{AMC10 box|year=2018|ab=B|num-b=19|num-a=21}} | {{AMC10 box|year=2018|ab=B|num-b=19|num-a=21}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 18:37, 16 February 2018
Contents
Problem
A function is defined recursively by and for all integers . What is ?
Solution 1
Thus, .
Solution 2
Start out by listing some terms of the sequence.
f(15)=15 ..... Notice how it repeats every 6 times where f(n)=n The number will always be an odd multiple of 3. The pattern of the numbers that follow will always be +3, +2, +0, -1, +0 The closest one to 2018 is 2013 so $$ (Error compiling LaTeX. Unknown error_msg)f(2018)=$$ (Error compiling LaTeX. Unknown error_msg)
See Also
2018 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 19 |
Followed by Problem 21 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.