Difference between revisions of "2018 AMC 10B Problems/Problem 16"
TheMagician (talk | contribs) (→Solution 3) |
TheMagician (talk | contribs) (→Solution 3) |
||
Line 25: | Line 25: | ||
==Solution 3== | ==Solution 3== | ||
− | We first note that <math>1^3+2^3+...=(1+2+...)^2</math>. So what we are trying to find is what <math>\left(2018^{2018}\right)^3=\left(2018)^{4036}\right</math> is mod <math>6</math>. We start by noting that <math>2018</math> is congruent to <math>2</math> mod <math>6</math>. So we are trying to find <math>2^4036</math> mod <math>6</math>. Instead of trying to do this with some number theory skills, we could just look for a pattern. We start small powers of <math>2</math> and see that <math>2^1</math> is <math>2</math> mod <math>6</math>, <math>2^2</math> is <math>4</math> mod <math>6</math>, <math>2^3</math> is <math>2</math> mod <math>6</math>, <math>2^4</math> is <math>4</math> mod <math>6</math>, and so on... So we see that since <math>2^(4036)</math> has an even power, it must be congruent to <math>4</math> mod <math>6</math>, thus giving our answer <math>\boxed{\text{(E) }4}</math>. You can prove this pattern using mods. But I thought this was easier. | + | We first note that <math>1^3+2^3+...=(1+2+...)^2</math>. So what we are trying to find is what <math>\left(2018^{2018}\right)^3=\left(2018)^{4036}\right)</math> is mod <math>6</math>. We start by noting that <math>2018</math> is congruent to <math>2</math> mod <math>6</math>. So we are trying to find <math>2^4036</math> mod <math>6</math>. Instead of trying to do this with some number theory skills, we could just look for a pattern. We start small powers of <math>2</math> and see that <math>2^1</math> is <math>2</math> mod <math>6</math>, <math>2^2</math> is <math>4</math> mod <math>6</math>, <math>2^3</math> is <math>2</math> mod <math>6</math>, <math>2^4</math> is <math>4</math> mod <math>6</math>, and so on... So we see that since <math>2^(4036)</math> has an even power, it must be congruent to <math>4</math> mod <math>6</math>, thus giving our answer <math>\boxed{\text{(E) }4}</math>. You can prove this pattern using mods. But I thought this was easier. |
-TheMagician | -TheMagician |
Revision as of 20:44, 16 February 2018
Let be a strictly increasing sequence of positive integers such that What is the remainder when is divided by ?
Contents
Solution 1
Therefore the answer is congruent to Please don't take credit, thanks!
Solution 2
(not very good one)
Note that
Note that Therefore, .
Thus, . However, since cubing preserves parity, and the sum of the individual terms is even, the some of the cubes is also even, and our answer is
Solution 3
We first note that . So what we are trying to find is what is mod . We start by noting that is congruent to mod . So we are trying to find mod . Instead of trying to do this with some number theory skills, we could just look for a pattern. We start small powers of and see that is mod , is mod , is mod , is mod , and so on... So we see that since has an even power, it must be congruent to mod , thus giving our answer . You can prove this pattern using mods. But I thought this was easier.
-TheMagician
See Also
2018 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 15 |
Followed by Problem 17 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.