Difference between revisions of "2018 AMC 8 Problems/Problem 22"
(→Problem 22) |
(→Problem 22) |
||
Line 16: | Line 16: | ||
<math>\textbf{(A) } 100 \qquad \textbf{(B) } 108 \qquad \textbf{(C) } 120 \qquad \textbf{(D) } 135 \qquad \textbf{(E) } 144</math> | <math>\textbf{(A) } 100 \qquad \textbf{(B) } 108 \qquad \textbf{(C) } 120 \qquad \textbf{(D) } 135 \qquad \textbf{(E) } 144</math> | ||
{{AMC8 box|year=2018|num-b=21|num-a=23}} | {{AMC8 box|year=2018|num-b=21|num-a=23}} | ||
− | + | ==Solution== | |
+ | Let the sidelength of the square be x. Then <math>\overline{EC}=\frac{x}{2}</math>. Notice that <math>\triangle{ABF}</math> and <math>\triangle{CEF}</math> are similar with ratio <math>2:1</math>. Than the altitude from <math>F</math> to<math>\overline{AB}</math> has length of <math>\frac{2x}{3}</math>. Then <math>[ABF]=\frac{2x^2}{6}=\frac{x^2}{3}</math>. Also <math>[BEC]=\frac{\frac{x}{2}\cdot x}{2}=\frac{x^2}{4}</math>. That means <math>[AFED]=x^2-\frac{x^2}{3}-\frac{x^2}{4}=\frac{5}{12}x</math>. So <math>[ABCD]=45\cdot\frac{12}{5}=108</math> or B | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 15:32, 21 November 2018
Problem 22
Point is the midpoint of side in square and meets diagonal at The area of quadrilateral is What is the area of
2018 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 21 |
Followed by Problem 23 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
Solution
Let the sidelength of the square be x. Then . Notice that and are similar with ratio . Than the altitude from to has length of . Then . Also . That means . So or B The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.