Difference between revisions of "2018 AMC 8 Problems/Problem 2"

m (Solution)
(Solution)
Line 6: Line 6:
 
==Solution==
 
==Solution==
 
 
You may simplify the expression to get <math>\frac{2}{1} \cdot \frac{3}{2} \cdot \frac{4}{3} \cdot \frac{5}{4} \cdot \frac{6}{5} \cdot \frac{7}{6}</math>.
+
By adding up the numbers in each parentheses, we have: <math>\frac{2}{1} \cdot \frac{3}{2} \cdot \frac{4}{3} \cdot \frac{5}{4} \cdot \frac{6}{5} \cdot \frac{7}{6}</math>.
  
Using telescoping, many things cancel out. You are left with <math>\frac{7}{1}</math> which is equivelant to <math>7</math>, or <math>\textbf{(D) }</math>
+
Using telescoping, most of the terms cancel out diagonally. We are left with <math>\frac{7}{1}</math> which is equivalent to <math>7</math>. Thus is answer would be <math>\boxed{(D) 7 }</math>
  
 
==See Also==
 
==See Also==

Revision as of 15:38, 21 November 2018

Problem 2

What is the value of the product\[\left(1+\frac{1}{1}\right)\cdot\left(1+\frac{1}{2}\right)\cdot\left(1+\frac{1}{3}\right)\cdot\left(1+\frac{1}{4}\right)\cdot\left(1+\frac{1}{5}\right)\cdot\left(1+\frac{1}{6}\right)?\]

$\textbf{(A) }\frac{7}{6}\qquad\textbf{(B) }\frac{4}{3}\qquad\textbf{(C) }\frac{7}{2}\qquad\textbf{(D) }7\qquad\textbf{(E) }8$

Solution

By adding up the numbers in each parentheses, we have: $\frac{2}{1} \cdot \frac{3}{2} \cdot \frac{4}{3} \cdot \frac{5}{4} \cdot \frac{6}{5} \cdot \frac{7}{6}$.

Using telescoping, most of the terms cancel out diagonally. We are left with $\frac{7}{1}$ which is equivalent to $7$. Thus is answer would be $\boxed{(D) 7 }$

See Also

2018 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png