Difference between revisions of "2018 AMC 8 Problems/Problem 24"

(Solution)
(Note)
Line 39: Line 39:
  
 
==Note==
 
==Note==
In the 2008 AMC 10A, Question 21 was nearly identical to this question.
+
In the 2008 AMC 10A, Question 21 was nearly identical to this question, its the same but for this question, you have to look for the square not the real thing.
  
 
==See Also==
 
==See Also==

Revision as of 15:10, 23 November 2018

Problem 24

In the cube $ABCDEFGH$ with opposite vertices $C$ and $E,$ $J$ and $I$ are the midpoints of edges $\overline{FB}$ and $\overline{HD},$ respectively. Let $R$ be the ratio of the area of the cross-section $EJCI$ to the area of one of the faces of the cube. What is $R^2?$

[asy] size(6cm); pair A,B,C,D,EE,F,G,H,I,J; C = (0,0); B = (-1,1); D = (2,0.5); A = B+D; G = (0,2); F = B+G; H = G+D; EE = G+B+D; I = (D+H)/2; J = (B+F)/2; filldraw(C--I--EE--J--cycle,lightgray,black); draw(C--D--H--EE--F--B--cycle);  draw(G--F--G--C--G--H); draw(A--B,dashed); draw(A--EE,dashed); draw(A--D,dashed); dot(A); dot(B); dot(C); dot(D); dot(EE); dot(F); dot(G); dot(H); dot(I); dot(J); label("$A$",A,E); label("$B$",B,W); label("$C$",C,S); label("$D$",D,E); label("$E$",EE,N); label("$F$",F,W); label("$G$",G,N); label("$H$",H,E); label("$I$",I,E); label("$J$",J,W); [/asy]

$\textbf{(A) } \frac{5}{4} \qquad \textbf{(B) } \frac{4}{3} \qquad \textbf{(C) } \frac{3}{2} \qquad \textbf{(D) } \frac{25}{16} \qquad \textbf{(E) } \frac{9}{4}$

Solution

Note that $EJCI$ is a rhombus. Let the side length of the cube be $s$. By the Pythagorean theorem, $EC= \sqrt 3s$ and $JI=\sqrt 2s$. Since the area of a rhombus is half the product of it's diagonals, so the area of the cross section is $\frac{\sqrt 6s^2}{2}$. $R = \frac{\sqrt 6}2$. Thus $R^2 = \boxed{\textbf{(C) } \frac{3}{2}}$

Note

In the 2008 AMC 10A, Question 21 was nearly identical to this question, its the same but for this question, you have to look for the square not the real thing.

See Also

2018 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png