2014 AMC 10B Problems/Problem 21

Revision as of 15:56, 19 January 2019 by Bobsonjoe (talk | contribs)

Problem

Trapezoid $ABCD$ has parallel sides $\overline{AB}$ of length $33$ and $\overline {CD}$ of length $21$. The other two sides are of lengths $10$ and $14$. The angles $A$ and $B$ are acute. What is the length of the shorter diagonal of $ABCD$?

$\textbf{(A) }10\sqrt{6}\qquad\textbf{(B) }25\qquad\textbf{(C) }8\sqrt{10}\qquad\textbf{(D) }18\sqrt{2}\qquad\textbf{(E) }26$

Solution 1

[asy] size(7cm); pair A,B,C,D,CC,DD; A = (-2,7); B = (14,7); C = (10,0); D = (0,0); CC = (10,7); DD = (0,7); draw(A--B--C--D--cycle); //label("33",(A+B)/2,N); label("21",(C+D)/2,S); label("10",(A+D)/2,W); label("14",(B+C)/2,E); label("$A$",A,NW); label("$B$",B,NE); label("$C$",C,SE); label("$D$",D,SW); label("$E$",DD,N); label("$F$",CC,N); draw(C--CC); draw(D--DD); [/asy]

In the diagram, $\overline{DE} \perp \overline{AB}, \overline{FC} \perp \overline{AB}$. Denote $\overline{AE} = x$ and $\overline{DE} = h$. In right triangle $AED$, we have from the Pythagorean theorem: $x^2+h^2=100$. Note that since $EF = DC$, we have $BF = 33-DC-x = 12-x$. Using the Pythagorean theorem in right triangle $BFC$, we have $(12-x)^2 + h^2 = 196$.


We isolate the $h^2$ term in both equations, getting $h^2= 100-x^2$ and $h^2 = 196-(12-x)^2$.

Setting these equal, we have $100-x^2 = 196 - 144 + 24x -x^2 \implies 24x = 48 \implies x = 2$. Now, we can determine that $h^2 = 100-4 \implies h = 4\sqrt{6}$.

[asy] size(7cm); pair A,B,C,D,CC,DD; A = (-2,7); B = (14,7); C = (10,0); D = (0,0); CC = (10,7); DD = (0,7); draw(A--B--C--D--cycle); //label("33",(A+B)/2,N); label("21",(C+D)/2,S); label("10",(A+D)/2,W); label("14",(B+C)/2,E); label("$A$",A,NW); label("$B$",B,NE); label("$C$",C,SE); label("$D$",D,SW); label("$D$",D,SW); label("$E$",DD,SE); label("$F$",CC,SW); draw(C--CC); draw(D--DD); label("21",(CC+DD)/2,N); label("$2$",(A+DD)/2,N); label("$10$",(CC+B)/2,N); label("$4\sqrt{6}$",(C+CC)/2,W); label("$4\sqrt{6}$",(D+DD)/2,E); pair X = (-2,0); //draw(X--C--A--cycle,black+2bp); [/asy]

The two diagonals are $\overline{AC}$ and $\overline{BD}$. Using the Pythagorean theorem again on $\bigtriangleup AFC$ and $\bigtriangleup BED$, we can find these lengths to be $\sqrt{96+529} = 25$ and $\sqrt{96+961} = \sqrt{1057}$. Since $\sqrt{96+529}<\sqrt{96+961}$, $25$ is the shorter length, so the answer is $\boxed{\textbf{(B) }25}$.

Solution 2

[asy] size(7cm); pair A,B,C,D,E; A = (-2,7); B = (14,7); C = (10,0); D = (0,0); E = (4,7); draw(A--B--C--D--cycle); draw(D--E); label("21",(C+D)/2,S); label("10",(A+D)/2,W); label("14",(12,1),E); label("14",(2,1),E); label("12",(A+E)/2,N); label("21",(E+B)/2,N); label("$A$",A,NW); label("$B$",B,NE); label("$C$",C,SE); label("$D$",D,SW); label("$D$",D,SW); label("$E$",E,N); [/asy]

The area of $\Delta AED$ is by Heron's, $4\sqrt{9(4)(3)(2)}=24\sqrt{6}$. This makes the length of the altitude from $D$ onto $\overline{AE}$ equal to $4\sqrt{6}$. One may now proceed as in Solution 1 to obtain an answer of $\boxed{\textbf{(B) }25}$.

See Also

2014 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png