2011 AMC 10B Problems/Problem 17

Revision as of 23:39, 23 January 2020 by Kpak0223 (talk | contribs) (Solution 3)

Problem

In the given circle, the diameter $\overline{EB}$ is parallel to $\overline{DC}$, and $\overline{AB}$ is parallel to $\overline{ED}$. The angles $AEB$ and $ABE$ are in the ratio $4 : 5$. What is the degree measure of angle $BCD$?

[asy] unitsize(7mm); defaultpen(linewidth(.8pt)+fontsize(10pt)); dotfactor=4;  real r=3; pair A=(-3cos(80),-3sin(80)); pair D=(3cos(80),3sin(80)), C=(-3cos(80),3sin(80)); pair O=(0,0), E=(-3,0), B=(3,0); path outer=Circle(O,r); draw(outer); draw(E--B); draw(E--A); draw(B--A); draw(E--D); draw(C--D); draw(B--C);  pair[] ps={A,B,C,D,E,O}; dot(ps);  label("$A$",A,N); label("$B$",B,NE); label("$C$",C,S); label("$D$",D,S); label("$E$",E,NW); label("$$",O,N); [/asy]

$\textbf{(A)}\ 120 \qquad\textbf{(B)}\ 125 \qquad\textbf{(C)}\ 130 \qquad\textbf{(D)}\ 135 \qquad\textbf{(E)}\ 140$

Solution 1

We can let $\angle AEB$ be $4x$ and $\angle ABE$ be $5x$ because they are in the ratio $4 : 5$. When an inscribed angle contains the diameter, the inscribed angle is a right angle. Therefore by triangle sum theorem, $4x+5x+90=180 \longrightarrow x=10$ and $\angle ABE = 50$.

$\angle ABE = \angle BED$ because they are alternate interior angles and $\overline{AB} \parallel \overline{ED}$. Opposite angles in a cyclic quadrilateral are supplementary, so $\angle BED + \angle BCD = 180$. Use substitution to get $\angle ABE + \angle BCD = 180 \longrightarrow 50 + \angle BCD = 180 \longrightarrow \angle BCD = \boxed{\textbf{(C)} 130}$

Note:

We could also tell that quadrilateral $BEDC$ is an isosceles trapezoid because for $\overline{EB}$ and $\overline{DC}$ to be parallel, the line going through the center of the circle and perpendicular to $\overline{DC}$ must fall through the center of $\overline{DC}$.

Solution 2

Note $\angle ABE = \angle BED=50$ as before. The sum of the interior angles for quadrilateral $EBCD$ is $360$. Denote the center of the circle as $P$. $\angle PDE = \angle PED = 50$. Denote $\angle PDC = \angle PCD = x$ and $\angle PBC = \angle PCB = y$. We wish to find $\angle BCD = x+y$. Our equation is $(\angle PDE +\angle PED)+(\angle PDC+\angle PCD)+(\angle PBC + \angle PCB) = 360 \longrightarrow 2(50) + 2x +2y = 360$. Our final equation becomes $2(x+y)+100 = 360$. After subtracting $100$ and dividing by $2$, our answer becomes $x+y=\boxed{\textbf{(C)} 130}$

Solution 3

Just measure the desired angle with a protractor and you will get the answer of $\boxed{\textbf{(C)} 130}$. -srisainandan6

However, the figure may not be drawn to scale. So, this is not the best solution.

See Also

2011 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png