1955 AHSME Problems/Problem 5

Revision as of 00:52, 14 October 2021 by Angelalz (talk | contribs) (Solution)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

$5y$ varies inversely as the square of $x$. When $y=16, x=1$. When $x=8, y$ equals:

$\textbf{(A)}\ 2 \qquad \textbf{(B)}\ 128 \qquad \textbf{(C)}\ 64 \qquad \textbf{(D)}\ \frac{1}{4} \qquad \textbf{(E)}\ 1024$

Solution

An inverse variation can be expressed in the form $xy = n$, where $n$ is any number (except perhaps zero). Since $5y$ varies inversely with the square of $x$, this particular one will be $5yx^2 = n$.

We can plug in $16$ for $y$ and $1$ for $x$, which makes $n=80$. The equation is now $5yx^2 = 80$.

When $x = 8$, we can solve for $y$ using the equation $320y = 80$, which makes $y$ $\boxed{\textbf{(D)} \frac{1}{4}}$.

See Also

1955 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions


The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png