2005 AMC 12A Problems/Problem 3

Revision as of 20:15, 3 July 2013 by Nathan wailes (talk | contribs) (See also)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

A rectangle with diagonal length $x$ is twice as long as it is wide. What is the area of the rectangle?

$(\mathrm {A}) \ \frac 14x^2 \qquad (\mathrm {B}) \ \frac 25x^2 \qquad (\mathrm {C})\ \frac 12x^2 \qquad (\mathrm {D}) \ x^2 \qquad (\mathrm {E})\ \frac 32x^2$

Solution

Let $w$ be the width, so the length is $2w$. By the Pythagorean Theorem, $w^2 + 4w^2 = x^2 \Longrightarrow \frac{x}{\sqrt{5}} = w$. The area of the rectangle is $(w)(2w) = 2w^2 = 2\left(\frac{x}{\sqrt{5}}\right)^2 = \frac{2}{5}x^2 \ \mathrm{(B)}$.

See also

2005 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png