2000 AIME II Problems/Problem 13
Problem
The equation has exactly two real roots, one of which is
, where
,
and
are integers,
and
are relatively prime, and
. Find
.
Solution
We may factor the equation as:
$\begin{align*}
2000x^6+100x^5+10x^3+x-2&=0\\
2(1000x^6-1) + x(100x^4+10x^2+1)&=0\\
2[(10x^2)^3-1]+x[(10x^2)^2+(10x^2)+1]&=0\\
2(10x^2-1)[(10x^2)^2+(10x^2)+1]+x[(10x^2)^2+(10x^2)+1]&=0\\
(20x^2+x-2)(100x^4+10x^2+1)&=0\\
\end{align*}$ (Error compiling LaTeX. Unknown error_msg)
Now for real
. Thus the real roots must be the roots of the equation
. By the quadratic formula the roots of this are:
Thus , and so the final answer is
See also
2000 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |