2003 AIME II Problems/Problem 13
Problem
A bug starts at a vertex of an equilateral triangle. On each move, it randomly selects one of the two vertices where it is not currently located, and crawls along a side of the triangle to that vertex. Given that the probability that the bug moves to its starting vertex on its tenth move is where and are relatively prime positive integers, find
Solution
After n moves, there are possible paths for the ant. But the key is to realize that the number of paths that get back the the start after n moves is the same as the number of paths the do NOT get the ant to the start after moves. So after 1 move, there are 0 ways the get to the start. After 2 moves, there are ways to get to the start. After 3 moves, there are ways to get to the start. Thus after 10 moves, there are ways to get to the start, so the probability is and the answer is .
See also
2003 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |