2002 AMC 12A Problems/Problem 24
Contents
Problem
Find the number of ordered pairs of real numbers such that .
Solution
Let be the magnitude of . Then the magnitude of is , while the magnitude of is . We get that , hence either or .
For we get a single solution .
Let's now assume that . Multiply both sides by . The left hand side becomes , the right hand side becomes . Hence the solutions for this case are precisely all the rd complex roots of unity, and there are of those.
The total number of solutions is therefore .
Solution 2
As in the other solution, split the problem into when and when . When and , , so we must have and hence . Since is restricted to , can range from to inclusive, which is values. Thus the total is .
See Also
2002 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 23 |
Followed by Problem 25 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |