2002 AMC 12A Problems/Problem 24

Revision as of 23:22, 4 January 2012 by Flyingpenguin (talk | contribs) (Solution)

Problem

Find the number of ordered pairs of real numbers $(a,b)$ such that $(a+bi)^{2002} = a-bi$.

$\text{(A) }1001 \qquad \text{(B) }1002 \qquad \text{(C) }2001 \qquad \text{(D) }2002 \qquad \text{(E) }2004$

Solution

Let $s=\sqrt{a^2+b^2}$ be the magnitude of $a+bi$. Then the magnitude of $(a+bi)^{2002}$ is $s^{2002}$, while the magnitude of $a-bi$ is $s$. We get that $s^{2002}=s$, hence either $s=0$ or $s=1$.

For $s=0$ we get a single solution $(a,b)=(0,0)$.

Let's now assume that $s=1$. Multiply both sides by $a+bi$. The left hand side becomes $(a+bi)^{2003}$, the right hand side becomes $(a-bi)(a+bi)=a^2 + b^2 = 1$. Hence the solutions for this case are precisely all the $2003$rd complex roots of unity, and there are $2003$ of those.

The total number of solutions is therefore $1+2003 = \boxed{2004}$.


Solution 2

As in the other solution, split the problem into when $s=0$ and when $s=1$. When $s=1$ and $a+bi=\cos\theta+\sin\theta$, $(a+bi)^{2002}= \cos(2002\theta)+i\sin(2002\theta)= \cos\theta-i\sin\theta= \cos(-\theta)+i\sin(-\theta) = a - bi$, so we must have $2002\theta=-\theta+2\pi k$ and hence $\theta=\frac{2\pi k}{2003}$. Since $\theta$ is restricted to $[0,2\pi)$, $k$ can range from $0$ to $2002$ inclusive, which is $2002-0+1=2003$ values. Thus the total is $1+2003 = \boxed{\textbf{(E)}\  2004}$.

See Also

2002 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions